Quantifying methane point sources from fine-scale (GHGSat) satellite observation of atmospheric methane plumes

Daniel J. Varon^{1,2}, Daniel J. Jacob¹, Jason McKeever², Berke Durak², Dylan Jervis², Yan Xia³, Yi Huang³

¹ Harvard University, Cambridge MA. ² GHGSat, Inc., Montréal QC. ³ McGill University, Montréal QC.

GHGSat poster:

• B1.4, Jason McKeever: GHGSat: Towards an Operational Constellation, W 10:15-12:00.

Methane is emitted by a very large number of small point sources

AVIRIS airborne remote sensing observations:

Frankenberg et al., (2016)

Conventional methane-observing satellites have limited ability to quantify point sources

GOSAT pixel

AVIRIS imagery courtesy of Dr. Andrew Thorpe, NASA JPL

GOSAT/TROPOMI specs:

- * Column precision: 0.1-1%
- * Pixel resolution: 1-10 km

TROPOMI pixel

Conventional methane-observing satellites have limited ability to quantify point sources

GOSAT pixel

AVIRIS imagery courtesy of Dr. Andrew Thorpe, NASA JPL

GOSAT/TROPOMI specs:

- * Column precision: 0.1-1%
- * Pixel resolution: 1-10 km

GHGSat imaging resolution

Conventional methane-observing satellites have limited ability to quantify point sources

GOSAT pixel

AVIRIS imagery courtesy of Dr. Andrew Thorpe, NASA JPL

GOSAT/TROPOMI specs:

- * Column precision: 0.1-1%
- * Pixel resolution: 1-10 km

GHGSat imaging resolution

1.5

km

 $Q = U\Delta\Omega(x,y) \left(\sqrt{2\pi}\sigma_y(x)e^{\frac{y^2}{2\sigma_y(x)^2}}\right)$

 $Q = \int_{-\infty}^{\infty} U(x,y) \Delta \Omega(x,y) dy$

IME $Q = \frac{1}{\tau} IME = \frac{U_{eff}}{I_{r}} IME = \frac{U_{eff}}{I_{r}}$

Gaussian plume inversion

$$= \frac{U_{eff}}{L} \sum_{j=1}^{N} \Delta \Omega_j A_j$$

Source pixel mass balance

$$= \frac{U_{eff}}{L} \sum_{j=1}^{N} \Delta \Omega_j A_j$$

Cross-sectional flux

$$= \frac{U_{eff}}{L} \sum_{j=1}^{N} \Delta \Omega_j A_j$$

Integrated Mass Enhancement (IME)

Cross-sectional flux

Integrated Mass Enhancement (IME)

WRF-LES: Large Eddy Simulations of methane point sources at 50-m resolution

LES ensemble of 15 simulations.

GHGSat pseudo-observations produced by column integration & addition of noise

Sensitivity of plume detection to instrument noise

Computing the source rate by the IME method

Frankenberg et al., (2016): $IME = \sum_{j=1}^{N} \Delta \Omega_j A_j$

$$\Delta \Omega_j = j$$
th column enhancement [kg m⁻²]
 $A_j = j$ th pixel area [m²]

Computing the source rate by the IME method

Frankenberg et al., (2016):
$$IME = \sum_{j=1}^{N} \Delta \Omega_j A_j$$
 $\Delta \Omega_j = j \text{th column enhancement [kg m-2]}$
 $A_j = j \text{th pixel area [m2]}$

Taking this one step further...

$$\Rightarrow Q = \frac{1}{\tau}IME = \frac{U_{eff}}{L}IME \qquad \begin{array}{l} U_{eff} = \text{Effect} \\ \tau = \text{dissipation} \\ L = \text{dissipation} \end{array}$$

ctive wind speed $[m \ s^{-1}]$ ion time scale $[s^{-1}]$ ion length scale [m]

7

Computing the source rate by the IME method: Inferring the plume mass (IME)

N

j=1

Frankenberg et al., (2016): $IME = \sum \Delta \Omega_j A_j$

Taking this one step further...

$$\Rightarrow Q = \frac{1}{\tau}IME = \frac{U_{eff}}{L}IME$$

Output of *t*-test procedure $\mathbf{2}$ 3 $\mathbf{5}$ 6 1 4 \mathbf{km}

$$\Delta \Omega_j = j$$
th column enhancement [kg m⁻²]
 $A_j = j$ th pixel area [m²]

 $U_{eff} = \text{Effective wind speed } [\text{m s}^{-1}]$ $\tau = \text{dissipation time scale } [s^{-1}]$ L = dissipation length scale [m]

7

Computing the source rate by the IME method: Inferring the plume size (L)

j=1

Frankenberg et al., (2016): $IME = \sum \Delta \Omega_j A_j$

Taking this one step further...

$$\Rightarrow Q = \frac{1}{\tau}IME = \frac{U_{eff}}{L}IME$$

 $U_{eff} = \text{Effective wind speed } [\text{m s}^{-1}]$ $\tau = \text{dissipation time scale } [s^{-1}]$ L = dissipation length scale [m]

 $\Delta \Omega_j = j \text{th column enhancement } [\text{kg m}^{-2}]$ $A_i = j$ th pixel area $[m^2]$

$$L = \sqrt{A_M} = \sqrt{\Sigma_{j=1}^N A_j}$$

Output of *t*-test procedure

7

Computing the source rate by the IME method

Frankenberg et al., (2016): $IME = \sum \Delta \Omega_j A_j$

Taking this one step further...

$$\Rightarrow Q = \frac{1}{\tau}IME = \underbrace{\frac{U_{eff}}{U_{eff}}IME}_{L}$$

N

j=1

$$\Delta \Omega_j = j \text{th column enhancement [kg m-2]}$$

$$A_j = j \text{th pixel area [m2]}$$

 $U_{eff} = \text{Effective wind speed } [\text{m s}^{-1}]$ $\tau = \text{dissipation time scale } [s^{-1}]$ L = dissipation length scale [m]

$$L = \sqrt{A_M} = \sqrt{\Sigma_{j=1}^N A_j}$$

Output of *t*-test procedure

7

Computing the source rate by the IME method

Frankenberg et al., (2016): $IME = \sum \Delta \Omega_j A_j$

Taking this one step further...

$$\Rightarrow Q = \frac{1}{\tau}IME = \frac{f(U_{10})}{L}IME$$

N

j=1

$$\Delta \Omega_j = j \text{th column enhancement [kg m-2]}$$

$$A_j = j \text{th pixel area [m2]}$$

 $U_{eff} = \text{Effective wind speed } [\text{m s}^{-1}]$ $\tau = \text{dissipation time scale } [\text{s}^{-1}]$ L = dissipation length scale [m]

$$L = \sqrt{A_M} = \sqrt{\Sigma_{j=1}^N A_j}$$

Output of *t*-test procedure

7

Inferring U_{eff} from the 10-m wind speed U_{10}

Inferring U_{eff} from the 10-m wind speed U_{10}

Testing the IME method

Testing the IME method

Testing the cross-sectional flux method

Testing the cross-sectional flux method

10

Source rate error standard deviations

Method	Instrument precision			Local wind
	1%	3%	5%	speed estimate
IME	0.07 t h ⁻¹ + 5%	0.13 t h ⁻¹ + 7%	0.17 t h ⁻¹ + 12%	15-50%
Cross-sectional flux	0.07 t h ⁻¹ + 8%	0.18 t h ⁻¹ + 8%	0.26 t h ⁻¹ + 12%	30-65%
				$7 \rightarrow 2 \mathrm{~m~s^{-1}}$

- IME method more precise than cross-sectional flux method.
- Sources > 0.5 t h⁻¹ accounting for 75% of U.S. GHGRP emissions can be retrieved usefully.
- Lack of local wind data may dominate error for low wind speeds.

11

Quantifying methane point sources from fine-scale (GHGSat) satellite observation of atmospheric methane plumes

Daniel J. Varon^{1,2}, Daniel J. Jacob¹, Jason McKeever², Berke Durak², Dylan Jervis², Yan Xia³, Yi Huang³

¹ Harvard University, Cambridge MA. ² GHGSat, Inc., Montréal QC. ³ McGill University, Montréal QC.

GHGSat poster:

• B1.4, Jason McKeever: GHGSat: Towards an Operational Constellation, W 10:15-12:00.

What if you don't have local observations of U_{10} ?

Additional retrieval uncertainty from using GEOS-FP to estimate local U_{10} :

15-50%IME method: 30-65%Cross-sectional flux method:

12