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Changes	in	carbon	fluxes	as	inferred	by	
the	Global	Carbon	Project

Le	Quere GMD	2015

Land	Use	Emissions	
decreased	by	~0.2	PgC/yr
Land	sink	increased	by	
about		1	PgC/yr since	
2000.

The	ocean	sink	is	thought	
to	be	increasing,	
reflecting	a	balance	
between	decreasing	CO2
capacity	and	increasing	
biological	activity



Reduced	biomass	burning	is	observed	in	the	tropics	as	a	result	of	shifting	
agricultural	practices	à increased	fragmentation	of	landscapes	in	all	
tropical	regions	but	also	reduced	logging	in	S.	America	due	to	policy.
Short	and	long-term	shifts	in	precipitation	also	play	a	role
Andela and	van	der	Werf,	Nat.	Clim.	Ch.	2014;Andela	et	al.,	Science	2017

What	is	the	role	of	reduced	burning	during	the	21rst	century	on	the	
global	carbon	budget?



What	is	the	role	of	reduced	burning	during	the	21rst	century	on	the	global	carbon	
budget?

CO2 ~	7300	Tg /	yr
CH4 ~	16	Tg/	yr
CO	~	350	Tg /	yr
Total	Carbon	~	2.1	PtG C/	yr
Emissions	estimates	depend	on	Burnt	area,	Fuel loads,		and	combustion
completeness
(e.g.	van	der Werf et	al.	2010,	2017,	Giglio	et	al.,	2006,	2009,	2010)



Quantify	CO2 emissions	using	CO	based	observations

MOPITT	CO	Near	IR	/	IR	
Averaging	Kernel

H.	Worden	et	al.,	JGR,	2010

~20-30% uncertainty in 
the lower troposphere
~5% uncertainty in the 
total column



Use	MOPITT	CO	data	and	the	4-D	Variational GEOS-Chem model
to	quantify	CO	emissions	

Jiang	et	al.	JGR	2013;	Bloom	et	al.	GRL	2015;	Jiang	et	al.	2017;	Worden	et	al.,	2017
Prior	Emissions

CO	Observations +

CO	Emissions

=



Trends	in	CO2 from	fires

CO	and	CO2 emissions	decline	until	
2015	are	in	same	region	as	burnt	area	
but	different	magnitudes	à larger	
decreases	than	expected	in	S.	
America,	Indonesia,	N.	Africa	and	
Siberia.
Different	combusted	biomass	amount	
and	combustion	efficiencies	likely
e.g.	Bloom	et	al.,	GRL	2015



How	does	climate	variability	and	human	(land-use)	affect	fire	
emissions	and	trends?

A	model	driven	by	climate	related	parameters	(temperature,	precipitation,	VPD)	
suggests	that	fire	emissions	should	strongly	increase	by	nearly	~	0.6	PtG C	/	yr.	
We	observe	that	fire	emissions	decrease	by	~0.2	PtG C	/	yr indicating	that	
human	effects	have	decreased	fire-based	carbon	emissions	by	~0.8	PtG C	/	yr
likely	due	to	changes	in	agricultural	practices	and	policy	



What	is	the	total	effect	of	decreased	burned	area	on	carbon	emissions?
“If	its	not	burning	than	its	growing”

Use	the	CARDAMOM	diagnostic	ecosystem	model	which	assimilates		
burnt	area,	CO	emissions,	LAI,	and	biomass		to	investigate	direct	and	
indirect	effects	of	reduced	burning
(Bloom	et	al.	PNAS,	2016)



Total	direct	emissions	of	carbon	
reduced	by	about	0.2	PgC/yr

But	combination	of	direct	and	indirect		
effects	of	reduced	burning	(modeled	by	
CARDAMOM)	is	nearly	1	PgC /	yr

The	combination	of	direct	reduction	of	emissions	and	indirect	effects	
(less	burning	means	more	growing)	is	~1.	PgC/yr

~1.	PgC/yr comparable	to	combined	change	in	land-sink	and	land-use	
flux	during	this	same	time	period

2015	El	Nino	(temporarily?)	negates	downward	trend



Summary

Climate	variability	(changes	in	precipitation,	temperature,	and	water	vapor	deficit)	would	
likely	have	increased	carbon	emissions	by	about	0.6	PtG C	/	yr.	Instead	biomass	burning	
emissions	decreased	~0.2	PtG C	/	yr suggesting	human	related	reductions	in	biomass	
burning	had	a	direct	impact	of	approximately	0.8	PtG C	/	yr

The	“indirect”	emissions	were	even	larger	(if	its	not	burning	its	growing),	suggesting	that	
fires	are	a	substantial	component	of	the	observed	changes	in	tropical	carbon	fluxes	over	
the	last	15	years.		

The	total	indirect	+	direct	effect	is	~1	PtG C	/	yr and	is	comparable	to	the	inferred	change	in	
land-use	+	land	sink	of	~	1.2	PtG C/yr

Follow	on	studies:
What	is	role	of	nutrient	cycling	on	“indirect	effect”:	Assimilate	new	biomass	maps	to	test	
decadal	growth	rates	estimates	after	fire	disturbance

Bring	in	XCO2	constraints	on	Net	Biome	Exchange	(NBE)	and	SIF	constraints	on	GPP	in	order	
to	better	partition	the	respiration	components	from	the	fires.	



Summary

Changes	in	global	fire	characteristics		resulted	in	~0.2	PtG/yr reduction	in	direct	emissions	
and	between	0.2	to		1.0	PtG/yr in	“indirect”	emissions,	suggesting	that	fires	are	a	
substantial	component	of	the	observed	changes	in	tropical	carbon	fluxes	over	the	last	15	
years.		These	changes	are	primarily	thought	to	be	due	to	land-scape	fragmentation	and	
policy	(Andela et	al.,	2017).

Follow	on	studies:
What	is	role	of	nutrient	cycling	on	“indirect	effect”:	Assimilate	new	biomass	maps	to	test	
decadal	growth	rates	estimates	after	fire	disturbance

How	much	of	this	change	is	due	to	human	effects	and	how	much	is	due	to	short/long	term	
climate	variability?		(Train	fire	variability	against	TRMM/GRACE	data)

700 12 FEBRUARY 2016 • VOL 351 ISSUE 6274 sciencemag.org SCIENCE

Fig. 1. Trends in land water storage from GRACE observations, April 2002 to November 2014. Glaciers and ice sheets are excluded. Shown are the
global map (gigatons per year per 1/2-degree grid), zonal total trends, full time series (millimeters per year SLE), and best-fit linear regression with
climatology removed (millimeters per year SLE). The strongest gains and losses are associated with climate-driven variability in precipitation.

Fig. 2. Storage trends partitioned into hydrologic gains and losses. (Left) As in
Fig. 1, but separated by negative (top) and positive (bottom) land water storage
trends. (Middle) The zonal average of the negative (top) and positive (bottom) trend

map (gigatons per year per 1/2-degree grid). (Right) GRACE land water storage time series averaged for the negative (top) and positive (bottom) land
water storage trend map (climatology removed). Estimated glacier trends are shown in the supplementary materials (44).
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GRACE	data	show	(2002-2014)	increased	
water	storage	despite	increasing	droughts

(Reager et	al.,	Science	2015)	



Case	Study:	Comparison	of	2010	and	2007	Amazon	fires
Bloom,	Worden,	Jiang	et	al.	GRL	2015

Burnt	area	~5%	larger	but	CO	emissions	~30%	lower
We	combine	land-surface	and	CO	measurements	constrain	2007	and	2010	fire	emission	factors	
and	combusted	biomass.
Likely	reason	for	relative	decline	in	emissions	is	reduced	combustion	biomass	density	(88%)	
possibly	due	to	decreased	GPP	in	2010
African	and	SE	Asia	due	to	shift	in	agricultural	practices		/	land-use	changes?



CO and Biomass Burning CO2 fluxes

Measurements of Pollution in the Atmosphere

• Carbon	monoxide	is	a	by-
product	of	incomplete	
combustion.	

• MOPITT	provides	CO	vertical	
profiles	with	near	surface	
sensitivity.

• Footprint	is	22	km	x	22	km

• CO2 from	biomass	burning	is	calculated	from	CO/CO2	
ratios	(Andreae and	Merlet,	GBC,	2001)

• Emission	factors	are	a	function	of	dry	mass	and	
burning	efficiency	

• Uncertainties	from	burnt-area	prior	propagated	to	
posterior	(based	on	CO)

Emission factors Jiang	et	al.,	2017;	Bowman	et	al.,	2017;	Liu	et	al.,	2017



Remote Sensing Science: retrievals and uncertaintyHow	do	we	turn	measured	top-of-atmosphere	radiances	to	
profiles	of	composition?

9908 C. S. Boxe et al.: Ozone profiles with ARC-IONS sondes during ARCTAS

(a)

 34

Figure 3 (a) V003 Data 

(b)
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Figure 3 (b) V004 Data 

Fig. 3. The TES-stare sequence on 5 July 2008 over Yellowknife started at 20:19 (UTC), and the ozonesonde on that day at Yellowknife was
launched at 20:07 (UTC), using V003 (a) and V004 (b) TES data.

Atmos. Chem. Phys., 10, 9901–9914, 2010 www.atmos-chem-phys.net/10/9901/2010/

𝐇 𝐱 = 𝐱𝐚 + 𝐀(𝐱 − 𝐱𝐚)

Optimal	estimation	provides	the	error	characterization	and	averaging	
kernels	needed	to	test	uncertainties	and	use	data	with	models


