Evaluating GPP and respiration estimates over northern mid-latitude ecosystems using solar induced fluorescence and atmospheric CO₂ measurements

Brendan Byrne¹ May 9, 2018

with: D. Wunch¹, D. B. A. Jones^{1,2}, K. Strong¹, F. Deng¹, I. Baker³, P. Köehler⁴, C. Frankenberg^{4,5}, J. Joiner⁶, V. K. Arora⁷, B. Badawy^{7*}, A. Harper⁸, T. Warneke⁹, C. Petri⁹, R. Kivi¹⁰, and C. M. Roehl⁴

¹University of Toronto, ²JIRESSE, UCLA, ³Colorado State University, ⁴Caltech, ⁵JPL, ⁶NASA Goddard Space Flight Center, ⁷ECCC, ⁸University of Exeter, ⁹University of Bremen, ¹⁰Finnish Meteorological Institute, *Now at University of Waterloo

Can we constrain large scale CO_2 fluxes?

<u>Net Ecosystem Exchange</u> Atmospheric CO₂ observations:

- Surface sites (1958 present)
- SCIAMACHY (2002 2012)
- TCCON (2004 present)
- GOSAT (2009 present)
- OCO-2 (2014 present)
- GHGSat (2016 present)
- TanSat (2016 present)

<u>Gross Primary Productivity</u> Solar Induced Florescence (SIF):

- GOME-2 (2006 present)
- GOSAT (2009 present)
- OCO-2 (2014 present)
- TROPOMI (2017 present) (retrieval since ~2011)

Ecosystem Respiration No constraints

Objective

Evaluate seasonal cycle of GPP and Re in terrestrial biosphere models and FLUXCOM using atmospheric CO₂ and Solar Induced Fluorescence (SIF).

Evaluating GPP and Re using SIF and CO₂

Y. Sun et al. Science 2017;358:eaam5747

Evaluating GPP and Re using SIF and CO₂

<u>Approach</u>: Evaluate models with SIF and CO₂ obs

- Mean seasonal cycle in northern mid-latitudes (2007-2012, 39-65 N)
- Evaluate existing GPP and Re estimates from models

 (a) Use GOME-2 SIF to evaluate model GPP

(b) Perform CO₂ flux inversion to obtain NEE

(c) Calculate Re (Re = NEE – GPP) with results from (a) and (b)

SIF can provide a constraint on GPP seasonality

- Terrestrial Biosphere models:
- Prognostic models
 - JULES (NCEP-CRU reanalysis)
 - CTEM-CRU (NCEP-CRU reanalysis)
 - CTEM-GEM (GEM-MACH-GHG forecast)
- Diagnostic models (assimilate phenology)
 - CASA (MERRA reanalysis)
 - SiB3 (MERRA, precip scaled to GPCP)
- Bottom up fluxes:
 - FLUXCOM
 - ANN, MARS, RF
 - Large spread in fluxes

(a) Use GOME-2 SIF to evaluate model GPP

- Normalize: divide GPP (or SIF) by annual total
- Results:
 - → FLUXCOM and diagnostic models (SiB3, CASA) GPP shows good agreement with SIF
 - → Prognostic models (JULES, CTEM CRU, CTEM GEM) show poor agreement

(b) NEE constraint: Flux inversions

Inversion	Observations	Model	Approach	Resolution	Prior NEE
CT2016*	Surface Sites	TM5	EnKF	3x2, 1x1 NA	CASA
GOSAT-Inv	GOSAT	GEOS-Chem	4D-var	4 x 5	CT2016

*CarbonTracker CT2016 results provided by NOAA ESRL, Boulder, Colorado, USA from the website at http://carbontracker.noaa.gov.

• Flux inversions agree with each other but show differences from models ⁷

(c) Calculate "optimized" Re (normalized)

• Optimized Re curves have broader summer peak than models

Why the difference?

- Systematic bias in FLUXNET partitioning?
 - Standard methods use a hypothesized response of GPP and Re to light, water, and/or temperature fluxes to do the partitioning.
 - Wehr et al. (2016) use isotopic observations at Harvard forest to show daytime/nighttime ratio is lower in June-July than August-September.
 - Is this true across northern extra-tropical ecosystems?
- Large fall Re at northern latitudes?
 - Commane et al. (2017) find significant Re fluxes from Alaskan tundra during October-December.
 - Could this be true over large boreal and Arctic regions?

Wehr, R., et al. (2016), Seasonality of temperate forest photosynthesis and daytime respiration, Nature, 534(7609), 680.

Commane, et al. (2017), Carbon dioxide sources from Alaska driven by increasing early winter respiration from arctic tundra, ¹⁰ P. Natl. A.Sci., 114(21), 5361–5366.

Conclusions

- Evaluated GPP and Re seasonal cycle in northern extra-tropics
 - Re summer peak is systematically broader when constrained by CO₂ and SIF obs.
 - Difference in Re suggests FLUXCOM/models are biased in their seasonal cycle, more research is needed to isolate the cause.

Future Work

- Refine spatial scales
 - Need better understanding of the scales GOSAT and OCO-2 observations can constrain the mean seasonal cycle.

Acknowledgments

Environment and Climate Change Canada

- Funding for this work has been provided by Environment and Climate Change Canada, the Canadian Space Agency, and NSERC.
- I.B.'s contribution was sponsored by the National Science Foundation Science and Technology Center for Multi-Scale Modeling of Atmospheric Processes, managed by Colorado State University under cooperative agreement No. ATM-04252467.
- CarbonTracker CT2016 results were provided by NOAA ESRL, Boulder, Colorado, USA from the website at http://carbontracker.noaa.gov.
- TCCON data were obtained from the TCCON Data Archive, hosted by CaltechDATA [http://tccondata.org].
- NASA and GFZ Potsdam GOME-2 SIF products were obtained from Aura Validation Data Center [http:/avdc.gsfc.nasa.gov] and GFZ-Potsdam FTP [ftp://ftp.gfz-potsdam.de], respectively.
- FLUXCOM products were obtained from the Data Portal of the Max Planck Institute for Biochemistry [https://www.bgc-jena.mpg.de].
- MERRA-2 products were downloaded from MDISC [https://disc.sci.gsfc.nasa.gov], managed by the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC).
- ACOS GOSAT lite files were obtained from the CO2 Virtual Science Data Environment [https://co2.jpl.nasa.gov/#mission=ACOS].

Extra: Re sensitive to GPP magnitude

- Magnitude of GPP is uncertain
- OptRe curves are similar for the same GPP magnitude
- Broad summer maximum in OptRe
 inversion-model

consistent across GPP range

