Detecting drought impact on terrestrial biosphere carbon cycle over US in the context of carbonclimate interannual variability

Junjie Liu¹, Kevin Bowman¹, Nicholas C Parazoo¹, A. Anthony Bloom¹, Debra Wunch², Zhe Jiang³, Kevin Gurney⁴, Dave Schimel¹

Jet Propulsion Laboratory, Caltech
 ^{2.} University of Toronto, Canada
 ^{3.} NCAR

Arizona State University

2011 Texas and 2012 central great plain drought

- The 2011 dry spell in Texas was the worst one-year period of drought since 1895.
- The area span of 2012 summer drought was comparable to the dust bowl era (<u>1930s</u> and <u>1950s</u>).
- Crop and livestock loss from 2011 Texas drought was worth of \$7.62 billion
- The 2012 drought has cost more than \$35 billion in the Midwest, reduce GDP by 0.5-1%, equivalent to \$75 - \$150 billion.

Questions

- Can satellite observations detect the impact of these large climate anomalies on terrestrial biosphere carbon cycle in spite of possible biases in satellite observations?
 - How do these two drought events differ in their seasonal progression in terms of climate drivers and carbon flux responses?
 - What are the general relationships between carbon flux anomalies and climate state anomalies?
 - How significant are drought impact on carbon fluxes relative to regional fossil fuel emissions?

CMS-Flux to Estimate Net CO₂ fluxes and its Component Fluxes

- Net biosphere production (NBP)= GPP Respiration
- Assimilate ACOS-GOSAT b7.3 from July 2009 to Dec 2015

Liu et al., 2014; 2017 Parazoo et al., 2015

• Baseline years: 2010, 2013-2015

Reduced net carbon uptake and growth in 2011 spring vs. increased net carbon uptake and growth in 2012 spring

Liu et al., 2018, in review

Soil moisture and temperature anomaly in 2011 and 2012 springs

- Soil moisture negative anomaly over Texas in 2011 was about 2.8 times of soil moisture anomaly over mid west in 2012
- Surface temperature anomaly was 1.9 °C (mean is ~20°C) over Texas in 2011, while it was 3.3 °C (mean is ~13 °C) over mid west in 2012
- Warm and drought in 2011 spring => Increased soil decomposition;
- Much warmer spring and not much water deficit in 2012 spring => increased growth

The NBP and GPP were greatly reduced during both 2011 and 2012 summer droughts

- NBP reduction: 0.14 GtC (25% of mean) over S. CONUS in 2011;
- NBP reduction: 0.39 GtC (30% of the mean) over CONUS in 2012
- GPP reduction: 0.10 GtC over S. CONUS in 2011;
- NBP reduction: 0.17 GtC over CONUS in 2012

 NBP reduction during 2011 and 2012 summer drought was due to both GPP reduction and respiration increase.

Reductions of NBP and GPP during summer correspond to drought and high temperature

 Negative soil moisture anomaly was comparable between S. CONUS in 2011 and CONUS in 2012

- T anomaly is 1.3 °C over S.
 CONUS in 2011
- T anomaly was 1.1 °C over CONUS in 2012

Total NBP and GPP anomaly between March and August

0.03-0.025-0.02-0.015-0.01

2012 NBP anomaly (March-August)

0.01 0.015 0.02 0.025 0.0

- NBP reduced by 25% over S. CONUS, but by 50% over Texas region in 2011;
- NBP reduced by 25% over CONUS between March and August in 2012
- GPP reduction was the driver for NBP reduction over regions with large NBP reduction

0.03-0.025-0.02-0.015-0.01

0.01 0.015 0.02 0.025 0.03

The relationship between soil moisture anomalies and NBP/GPP interannual variability in summer

- Soil moisture anomalies explain more than 80% of summer GPP interannual variability in both S. CONUS and N. CONUS
- The relationship between soil moisture anomaly and NBP anomaly is not as good.

The relationship between soil moisture anomalies and NBP/GPP interannual variability in summer

S. CONUS

• 2011 has the largest negative soil moisture anomaly over S. CONUS, while 2012 had the largest negative soil moisture anomaly over N. CONUS.

NBP reduction from 2011 and 2012 drought more than 40% of the regional fossil fuel emissions

Unit: GtC/year

Conclusions

- Flux inversions assimilating ACOS-GOSAT observations detected the 2011 and 2012 US drought impact on net biosphere carbon uptake.
- Due to the seasonal compensating effect, the annual mean impact of 2012 drought over CONUS is smaller than 2011 Texas drought.
- The NBP reduction was dominated by the reduction of GPP over the regions with most severe drought.
- Soil moisture anomalies and GPP anomalies have strong linear relationship in summer.
- NBP reduction from 2011 and 2012 drought more than 40% of the regional fossil fuel emissions, indicating that interannual variability and long-term change of NBP needs to be taken into account in designing any emission mitigation policy.

Back-up slides

Seasonal compensation effect of 2012 mid-west drought

 Seasonal compensating effect is consistent with Wolf et al. (2016)

The relationship between T anomalies and NBP/GPP interannual variability in summer

S. CONUS

N. CONUS

- T anomalies explain more than 60% of summer GPP interannual variability in both S. CONUS and N. CONUS,
- The relationship between T anomaly and NBP anomaly is not as good.

The relationship between soil moisture anomalies and NBP/GPP interannual variability in summer

S. CONUS

N. CONUS

GPP, red: 2012; black: baseline

1.

1.

•