Detecting drought impact on terrestrial biosphere
carbon cycle over US in the context of carbon-
climate interannual variability




2011 Texas and 2012 central great plain drought

(a) August 30'", 2011 (b) August 28", 2012

Sun et al., 2015
DO: Abnormally Dry D1: Moderate Drought \ D2: Severe Drought

- D3 Extreme Drought - D4: Exceptional Drought

The 2011 dry spell in Texas was the worst one-year period of drought since 1895.

The area span of 2012 summer drought was comparable to the dust bowl era (1930s and 1950s).

Crop and livestock loss from 2011 Texas drought was worth of $7.62 billion

The 2012 drought has cost more than $35 billion in the Midwest, reduce GDP by 0.5-1%, equivalent
to $75 - $150 billion.



Questions

* Can satellite observations detect the impact of these large climate anomalies
on terrestrial biosphere carbon cycle in spite of possible biases in satellite
observations?

* How do these two drought events differ in their seasonal progression in
terms of climate drivers and carbon flux responses?

= What are the general relationships between carbon flux anomalies and
climate state anomalies?

* How significant are drought impact on carbon fluxes relative to regional
fossil fuel emissions?



CMS-Flux to Estimate Net CO, fluxes and its
Component Fluxes

ing

Optimal
Inversion System Estimation

et biosphere productior
(NBP)

* Net biosphere production (NBP)= GPP - Respiration
e Assimilate ACOS-GOSAT b7.3 from July 2009 to Dec 2015

e Baseline vears: 2010. 2013-2015

Liu et al., 2014; 2017
Parazoo et al., 2015



Reduced net carbon uptake and growth in 2011 spring vs.
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increased net carbon uptake and growth in 2012 spring

* NBP reduced by 0.06 GtC
(60%)

* GPP reduced by 0.01

=> NBP reduction was

dominated by increase of

respiration

* NBP increased by 0.1 GtC
(50%)

 GPP increased by 0.1 GtC

=> NBP increase was

dominated by increase of

GPP

Liu et al., 2018, in review



Soil moisture and temperature anomaly in 2011 and

2011 MAM surface soil moisture
anomaly (m3/m?3)
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* Soil moisture negative

anomaly over Texas in
2011 was about 2.8 times
of soil moisture anomaly
over mid west in 2012

Surface temperature
anomaly was 1.9 C (mean
is ~20°C) over Texas in
2011, whileitwas 3.3 C
(mean is ~13 °C) over mid
west in 2012

« Warm and drought in 2011 spring => Increased soil decomposition;
 Much warmer spring and not much water deficit in 2012 spring => increased growth



The NBP and GPP were greatly reduced during both
2011 and 2012 summer droughts

2011 JJA NBP anomaly (GtC) 2011 JIA GPP anomaly (GtC) e NBP reduction: 0.14 GtC

(25% of mean) over S.
CONUS in 2011;
* NBP reduction: 0.39 GtC
(30% of the mean) over
e T e CONUS in 2012
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 GPP reduction: 0.10 GtC
over S. CONUS in 2011;

* NBP reduction: 0.17 GtC
over CONUS in 2012
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* NBP reduction during 2011 and 2012 summer drought was due to both GPP reduction and
respiration increase.
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2011 JJA surface soil moisture

Reductions of NBP and GPP during summer
correspond to drought and high temperature
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* Negative soil moisture
anomaly was comparable
between S. CONUS in
2011 and CONUS in 2012

e Tanomalyis 1.3 C over S
CONUS in 2011

e Tanomaly was 1.1 C ovel
CONUS in 2012



Total NBP and GPP anomaly between March and

2011 NBP anomaly (March-August)
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NBP reduced by 25% over S.
CONUS, but by 50% over Texas
region in 2011;

NBP reduced by 25% over
CONUS between March and
August in 2012

GPP reduction was the driver
for NBP reduction over regions
with large NBP reduction



The relationship between soil moisture anomalies
and NBP/GPP interannual variability in summer
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* Soil moisture anomalies explain more than 80% of summer GPP interannual variability in both S.
CONUS and N. CONUS

* The relationship between soil moisture anomaly and NBP anomaly is not as good.



The relationship between soil moisture anomalies
and NBP/GPP interannual variability in summer
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e 2011 has the largest negative soil moisture anomaly over S. CONUS, while 2012 had the largest
negative soil moisture anomaly over N. CONUS.



NBP reduction from 2011 and 2012 drought more than
40% of the regional fossil fuel emissions
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Conclusions

* Flux inversions assimilating ACOS-GOSAT observations detected the 2011
and 2012 US drought impact on net biosphere carbon uptake.

* Due to the seasonal compensating effect, the annual mean impact of 2012
drought over CONUS is smaller than 2011 Texas drought.

* The NBP reduction was dominated by the reduction of GPP over the regions
with most severe drought.

* Soil moisture anomalies and GPP anomalies have strong linear relationship
in summer.

* NBP reduction from 2011 and 2012 drought more than 40% of the
regional fossil fuel emissions, indicating that interannual

variability and long-term change of NBP needs to be taken into
account in desighing any emission mitigation policy.



Back-up slides



Seasonal compensation effect of 2012 mid-west drought
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The relationship between T anomalies and
NBP/GPP interannual variability in summer
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* T anomalies explain more than 60% of summer GPP interannual variability in both S. CONUS and
N. CONUS,

* The relationship between T anomaly and NBP anomaly is not as good.



The relationship between soil moisture anomalies
and NBP/GPP interannual variability in summer
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(a) S—CONUS (20N-36N) (c) S-CONUS (20N-36N)
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(b) N-CONUS (36-50N)
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unit: GtC/year

GPP, red: 2012; black: baseline
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