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The US experienced the “shale gas revolution” 2007-2015
due to a combination of horizontal drilling and hydraulic fracturing.
Was this accompanied by significantly increased methane emissions?



Turner et al. (2016) suggested a 30% increase 
in US emissions 2004-2014.

If this trend is correct, 
it would account for 

30-60% of the renewed 
global trend



But Bruhwiler et al., (2017) made several poignant critiques.

In order to carefully assess trends in US methane emissions:
 
• a consistent inversion framework should be used                             

to compare different periods (and data types).
• boundary conditions should be constructed in a way                            

that avoids aliasing emissions trends.
• The seasonal sampling bias of GOSAT should be considered.

Here, we perform an analysis aimed at satisfying these points. 
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We analyzed observations 
using the CarbonTracker-Lagrange CH4 inverse modeling system.

Contours Contain X% of Footprint
25% 50% 75% 100%

In-Situ, Flask, Aircraft 
(NOAA Obspack) GOSAT RemoteC Proxy 2.3.7

• 10 day back trajectories through 10km WRF fields (AER) 

• GOSAT influence simulated with 23 levels                                                                         

weighted by pressure, averaging kernel, and water vapour

• Daily resolved geostatistical inverse model

Surface observations selected: 

• 11am - 3pm

• longer time series

• no complex terrain

GOSAT observations selected: 

• Passed all quality flags

• No glint



We use the L-BFGS-B algorithm to solve the emissions 
under the constraint that they are non-negative. 

Our inversion system minimizes the 
geostatistical cost function:

We solve a linear model of prior information.
This ensures that the prior is not influencing the trend. 

(Michalak et al., 2004)
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Background concentrations are usually evaluated 

in one of the following ways: 

Empirical/model offline model Statistical

We created a hybrid method

Works great for surface data

GOSAT mean enhancement for USA is 11ppb

Stratospheric errors/biases are problematic


GOSAT would need to be binned spatially

Many regions have no clean air (e.g. Texas)

Example: Ammoura et al., 2015

Use separate data/model 

at the inversion system boundary

Use the clean-air data as 

background concentrations

Boundary
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The quantile regression minimizes:
Q(βq) =

∑

i|yi<x iβ

q|yi − xiβ|+
∑

i|yi≥x iβ

(1− q)|yi − xiβ|

The background is estimated using a quantile regression.

A quantile regression is a linear model of data, 
but instead of predicting the mean, it predicts a quantile q.

Tropospheric contribution

from NOAA Marine 

Boundary Reference/

Aircraft and Flask

Stratospheric contribution 

from CLaMS

CLaMS

x2

x1

x0 Intercept

Our Variables:
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De-seasonalized and  
de-trended background Observations - background

Observations - background 
vs. Time

Observations - background 
vs. Latitude

The quantile regression produces a clear signal,
and has good residuals in time and latitude
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The positive skewness of the distribution of observations 
gives the strength of the signal.

But how do we decide which quantile to use?

higher emissions

Obspack GOSAT
Q-Q plots



The correct quantile 

predicts clean air observations without bias
Look at observations with <1.5ppb enhancement.

Subtract the enhancement and calculate the mean. 
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Black: Obspack: 41 ± 2 Tg/yr
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We find independent agreement between posterior emissions
using GOSAT and Obspack data 

Total US Emissions



In order to carefully assess trends in US methane emissions:
 
• a consistent inversion framework should be used                             

to compare different periods (and data types).
• boundary conditions should be constructed in a way                            

that avoids aliasing emissions trends.
• The seasonal sampling bias of GOSAT should be considered.
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Does the seasonality of GOSAT sampling produce a bias?
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GOSAT does a good job of matching the budget
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Conclusions

• We retrieved US methane emissions from                                    
GOSAT and Obspack with good agreement.  

• Our inversion system does not produce a significant trend                
in US methane emissions for 2009 - 2012.

• 2013 and 2014 coming shortly. 

Mean of 41 Tg/yr agrees well 
with Saunas et al., 2016

Obspack GOSAT



Thanks!

Check out CarbonTracker-Lagrange at 
esrl.noaa.gov/gmd/ccgg/carbontracker-lagrange/

And CarbonTracker at:
esrl.noaa.gov/gmd/ccgg/carbontracker/

Contact me at:
benmergui@g.harvard.edu



GOSAT
σQ = 0.04 µmol m−2 s−1 σQ = 0.04 µmol m−2 s−1

NACP

σR = 20 ppb σR = 50 ppb

φl = 100 km
φt = 30 days

φl = 100 km
φt = 30 days

Error Parameters (Restricted Maximum Likelihood)

30.6 10

0.034 0.05


