Reconciling satellite and in-situ estimates of
North American methane emissions
during the unconventional gas boom of 2009-2012
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The US experienced the “shale gas revolution” 2007-2015
due to a combination of horizontal drilling and hydraulic fracturing.
Was this accompanied by significantly increased methane emissions?
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Turner et al. (2016) suggested a 30% increase
in US emissions 2004-2014.
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If this trend is correct,
it would account for
30-60% of the renewed
global trend

(3]

3
(4}

LR (=]
(=]
Trends in A methane (% a™)

]
—
(3]




But Bruhwiler et al., (2017) made several poignant critiques.

In order to carefully assess trends in US methane emissions:

e a consistent inversion framework should be used

to compare different periods (and data types).
e boundary conditions should be constructed in a way

that avoids aliasing emissions trends.
e The seasonal sampling bias of GOSAT should be considered.

Here, we perform an analysis aimed at satisfying these points.



In order to carefully assess trends in US methane emissions:

e a consistent inversion framework should be used
to compare different periods (and data types).



We analyzed observations
using the CarbonTracker-Lagrange CH4 inverse modeling system.

* 10 day back trajectories through 10km WREF fields (AER)
e GOSAT influence simulated with 23 levels

weighted by pressure, averaging kernel, and water vapour
* Daily resolved geostatistical inverse model
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Our inversion system minimizes the
geostatistical cost function:

p(s.Bl2) x exp |~ (2~ Hs)R(z — Hs) — - (s ~ XB)Q (s — XP)

(Michalak et al., 2004)

We solve a linear model of prior information.
This ensures that the prior is not influencing the trend.

We use the L-BFGS-B algorithm to solve the emissions
under the constraint that they are non-negative.



In order to carefully assess trends in US methane emissions:

e boundary conditions should be constructed in a way
that avoids aliasing emissions trends.



Background concentrations are usually evaluated

iIn one of the following ways:

Empirical/model offline model

Use separate data/model
at the inversion system boundary

Receptor

Wind =—>

Works great for surface data
GOSAT mean enhancement for USA is 11ppb
Stratospheric errors/biases are problematic

Statistical

Use the clean-air data as
background concentrations

Example: Ammoura et al., 2015
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GOSAT would need to be binned spatially
Many regions have no clean air (e.g. Texas)

We created a hybrid method



The background is estimated using a quantile regression.

A quantile regression is a linear model of data,
but instead of predicting the mean, it predicts a quantile g.

The quantile regression minimizes:

QB = D ayi—xziBl+ > (1—qly—xifl
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Our Variables:

Aircraft and flask data
projected to curtain with STILT (NCEP)
and smoothed

X2  Stratospheric contribution
from CLaMS

7000 m asl

X1 Tropospheric contribution Marine Boundary Layer
Reference

from NOAA Marine =/ /o _nelerence
Boundary Reference/

, 3000 m asl
Aircraft and Flask

Xo  Intercept 1000 m asl

Surface

Wind =—p



The quantile regression produces a clear signal,
and has good residuals in time and latitude

De-seasonalized and
de-trended backgroun
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The positive skewness of the distribution of observations

gives the strength of the signal.
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But how do we decide which quantile to use?



The correct quantile
predicts clean air observations without bias

Look at observations with <1.5ppb enhancement.
Subtract the enhancement and calculate the mean.
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We find independent agreement between posterior emissions
using GOSAT and Obspack data
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In order to carefully assess trends in US methane emissions:

e The seasonal samupling bias of GOSAT should be considered.



Does the seasonality of GOSAT sampling produce a bias?

We run an OSSE inversion using the GOSAT footprints,
with perfect transport and backgrounds,
and target emissions given by the posterior of the NACP inversion.

NACP GOSAT OSSE
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GOSAT does a good job of matching the budget
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Conclusions

e We retrieved US methane emissions from
GOSAT and Obspack with good agreement.

* Qur inversion system does not produce a significant trend
in US methane emissions for 2009 - 2012.

e 2013 and 2014 coming shortly.
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Check out CarbonTracker-Lagrange at

esrl.noaa.gov/gmd/ccgg/carbontracker-lagrange/

And CarbonTracker at:
esrl.noaa.gov/gmd/ccgg/carbontracker/
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