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Can I rely on satellite data alone to detect 
anomalous high-mode emitters among the 

production sites in an oil/gas field?

What inverse method should I use to interpret 
these atmospheric observations?

Can I usefully supplement satellite information 
with surface monitoring? 

Daniel Cusworth, Harvard University



Methane Emissions from oil/gas production sites (kg/h)

Most production emissions come from relatively few emitters –
i.e., well-pads have “fat-tailed” or bimodal distributions. 

6.6% of well pad sites 
account for 50% of total 

emissions from wells

Zavala-Araiza et al., 2015

Can we locate sustained these anomalous emitters from space?



We set up observing system simulation experiments (OSSE) to test the 
feasibility of finding high-mode emitters using future satellite information.

Input: 
Distribution of 
point emissions 

including 
outliers

Create pseudo-
observations with 

known 
satellite/surface  

noise characteristics 
and resolution

Output: 
Locations of high-mode 

(outlier) emitters

Transport model
to simulate “true” 

atmospheric 
methane 

concentrations 

Inverse 
model

We want the inversion to find the locations of high-mode emitters. We don’t 
care as much about quantifying the magnitude of emitter through the inversion.

Compare
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We construct an ensemble of emission fields using the 
emission characteristics of of production sites.

Randomly distribute N emitters 
in a 50 km2 subdomain

For each emitter, get true emission rate by 
sampling emission probability density 

functions (pdfs) – Generate 500 ensembles

pdfs from field measurements 
(Lan et al., 2015; Rella et al., 2015; Yacovitch et al., 2015) 
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Atmospheric methane concentrations are simulated using WRF-STILT.

To generate pseudo-observations (constant background):
y = Hx + 𝞂ε + b

Oct 19, 09 local time (LT) 

H = ∂y/∂x : Jacobian matrix derived 
from WRF-STILT (Turner et al. 2018)
x: emission state vector

𝞂: instrument precision
ε ~ N(0,1)
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We generate methane columns for TROPOMI, GeoCARB (2-4 passes/day), 
and a next-generation geostationary (10 passes/day) satellite. 

Even high-resolution enhancements are small compared to instrument precision. 

Repeat sampling and inverse methods are needed to constrain locations of emitters.

Simulated noiseless concentrations of column methane 
for single pass of different satellite configurations

𝞂 = 11 ppb 𝞂 = 4 ppb 𝞂 = 1 ppb
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We explore sparse and non-sparse inversion solutions.

STILT 
footprints

Pseudo
observations

Regularization 
parameter

L-1 or L-2 
norm

𝒙# , the optimal emission vector, is found by minimizing the cost function J(x):

𝑱(𝐱) = 𝐇𝐱 − 𝒚 ,𝐑./ 𝐇𝐱 − 𝒚 + 𝜆 𝐱 2

Observational error 
covariance

Observational error covariance R constructed using error correlation length scales:

𝑟44 = 	𝜎78 +	𝜎48

𝑟49 = 	𝜎78		×	exp −
𝑑
ℓ exp −

𝑡
𝜏 				for	𝑖	 ≠ 𝑗

ℓ = 40 km (spatial length scale)
𝛕 = 2 hrs (temporal length scale)
𝞂m = 4 ppb

𝑟49 = 	 𝑐𝑜𝑟 𝑖, 𝑗 	×	𝜎78 exp −
𝑑
ℓ exp −

𝑡
𝜏 				for	𝑖	 ≠ 𝑗

For combined satellite + surface inversion: 𝑐𝑜𝑟 𝑖, 𝑗 	=0.65

Sheng et al. (2018)



OLS Solution

L-1 norm L-2 norm (Gaussian)

One coefficient 
set to zero

Two nonzero 
coefficients

x1

x2

x1

x2
𝒙#OLS

L-1 regularization favors sparser solutions than L-2:

𝒙#OLS

Our emitter field is quasi-sparse, so L-1 may be preferable



9Retrieved optimal emissions 𝐱N	(μmol m-2 s-1)

D
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sit
y

Low 
mode

High 
mode

Example classification of high-mode emitters 
using posterior emission estimate 𝐱N

L-1 inversion

L-2 inversion

S 𝞂’s

High-mode classification:

S 𝞂’s above the mean

Vary S between 1.65-2.5

L-1 sparse solutions may be more suited for fat-tailed emission distributions. 
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We grade the inversion/classification using three performance metrics:

Probability of Detection (POD): 
100 * True Positives (TP) / [True Positives + False Negatives (FN)]

False Alarm Ratio (FAR): 
100 * False Positives (FP) / [True Positives + False Positives]

Tells you how many anomalous emitters you predicted 
compared to how many exist in reality.

Tells you how often you cause a false alarm by predicting an 
anomalous emitter that didn’t exist in reality.

Equitable Threat Score (ETS): 
[FP – Random Hits] / [TP + FP + FN – Random Hits]
Combines POD and FAR to give an overall prediction metric.
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L-1 inversion consistently produces results. Consistent 
with sparse nature of emission distribution. 

For a field of 100 emitters Dashed line: Success criteria
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Observing systems are more successful at constraining fields of fewer emitters.

Can we do anything to 
improve TROPOMI and 
GeoCARB detections for 
denser fields of emitters?

Using L-1 inversion 

Dashed line: Success criteria



13

Are all false positives created equal? What if introduce a spatial tolerance?

Location of true high-
mode emitter 

False positive 
prediction 1

False positive 
prediction 2

d1

False positive prediction 1 may be 
sufficiently good as the distance to 
the true high-mode emitter is small.
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Spatial tolerance improves satellite detections.

For 5km tolerance, 
GeoCARB gets closer but 
is still not quite successful.

Using L-1 inversion, 100 emitter field 

What about adding 
surface monitors to the 

prediction?
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Surface monitors are placed using the k-means algorithm. 
Average distance between emitter and monitor is minimized.

Surface monitor
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Combining satellite information with surface monitors via a 
joint inversion provides successful detection capability.

10-20 monitor 
combination with 

TROPOMI or GeoCARB
are successful!

Using L-1 inversion, 100 emitter field 

Next-generation doesn’t 
improve with surface 

monitoring. Can do it all 
from space!
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Answers to our initial questions:

Can I rely on satellite data alone to detect anomalous high-mode 
emitters among the production sites in an oil/gas field?

For fields of few emitters, yes! As you increase the density of emitters, 
TROPOMI and GeoCARB need to be supplemented with surface monitors 
and/or a spatial tolerance needs to be allowed.

What inverse method should I use to 
interpret these atmospheric observations?

We find that sparse/L-1 methods are better suited for this problem due to 
the fact that the oil/gas field is essentially sparse in its emission 
characteristics.

Can I usefully supplement satellite information with surface monitoring?

Adding surface monitors shows the potential to improve predictions via a 
combined inversion. The next-generation satellite alone is sufficient for 
successful detection.


