

An updated status of MicroCarb Project Francois BUISSON – MicroCarb project manager. IWGGMS-14 Toronto 8-10 May 2018

Programmatic situation

- Decided in Dec. 2015 (in the frame of COP-21) by French government.
- UK joined the project in April 2017. Partnership set between CNES and UKSA
- Funding completed (development and commissioning)
- CNES conducts the project and develops the system and the satellite
- Airbus Defence and Space develops the instrument
- Thales Alenia space will perform the integration and test of the satellite
- Phase C is on –going => launch in 2021
- LATMOS LATMOS

- UK Scientists
 - ✦ UoL: University of Leicester
 - UoE: University of Edimbourgh
- Joined the French scientists
 - LSCE: Laboratoire des Sciences du Climat et de l'Environnement
 - LMD: Laboratoire de Métérologie Dynamique
 - ✦ IPSL: Institut Pierre Simon Laplace
 - LATMOS: Laboratoire Atmosphères, Milieux, Observations Spatiales

THE UNIVERSITY IN UNIVERSITY OF of EDINBURGH

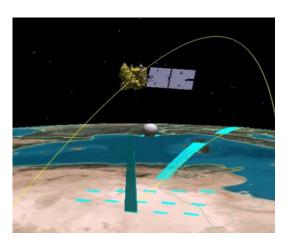
MicroCarb Mission

- Performances: : XCO₂ measurement
 - Random Noise (goal: 0. 5 ppm Threshold: 1.5 ppm)
 - Bias (systematic Error variation) < 0.2 ppm
- On ground resolution
 - Sampling mission: 3 samples every 1.4 s: Footprint 4.5 x 9 km –
 - Exploratory mode: imaging with higher resolution 2x2 km² over limited area (40x40 km²)
- Compact instrument . Compatible with microsatellite <200kg

- Orbit
 - SSO 649 km 10h30 LTDN or 13h30 LTAN
 - ♦ 25 days 7 days sub-cycle
- Life time: 5 years
- Launch: as an auxiliary payload

Observation modes

Routine mode

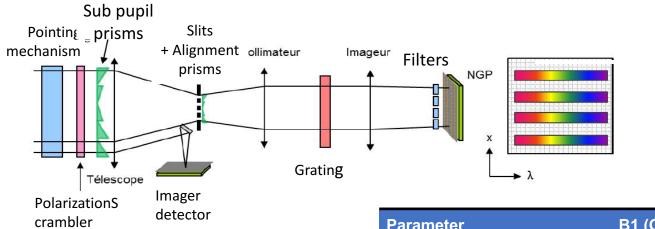

- Nadir, Glint, Target, Scan
- With footprint: 4.5 x 9 km
- FOV/IFOV= 15

Calibration mode

- Sun pointing
- Moon pointing

Exploratory mode: City mode

- Obtained by slowing down the satellite scrolling + scan activation + binning tuning (on ground) + integration time tuning
- No data acquisition before / after (satellite maneuver)
- Typical footprint: 2x2 km
- Typical area surface: 40x40 km²

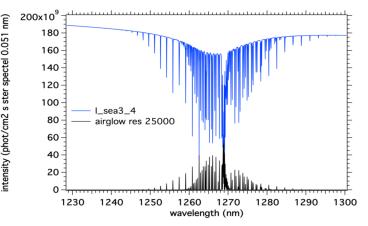

2 k

Instrument Optical design

Unique Spectrometer

Unique detector

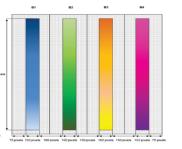
Imager


Detection of sparse clouds

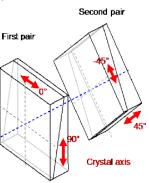
Parameter	Value
Central Wavelength	0.625 µ
FOV	18 x 26 km²
Resolution	140 m

Parameter	B1 (O ₂)	B4 (O ₂)	B2(CO ₂)	B3(CO ₂)
Center wavelength (nm)	763	1269	1607	2037
Bandwidth(nm)	10	17	22	27
Mean spectral resolution	24 872	24 996	24 967	24 829
Signal to Noise Ratio per channel (@mean radiance)	285	378	344	177

Use of 1.27 μ band O2


- Aerosols properties depends on wavelength => interest to have characterization in λ close to CO2 bands
- Band used by TCCON
- A reduction of the uncertainty on X_{CO2} is expected:
 - Better assessment of the spectral impact of aerosols and of N_{dry air} at CO₂ wavelengths
 - Reduction of the impact of uncertainty in spectroscopy
- Affected by air glow phenomena in high stratosphere
 - Analysis has demonstrated that air glow could be modeled (Reprobus) and its effects corrected with sufficient accuracy
 - Model was verified with Sciamachy data
 - Airglow will be estimated together with O2 (as an element in 4A RTIC state vector)
- Work is in progress to improve O2 spectroscopy in this band

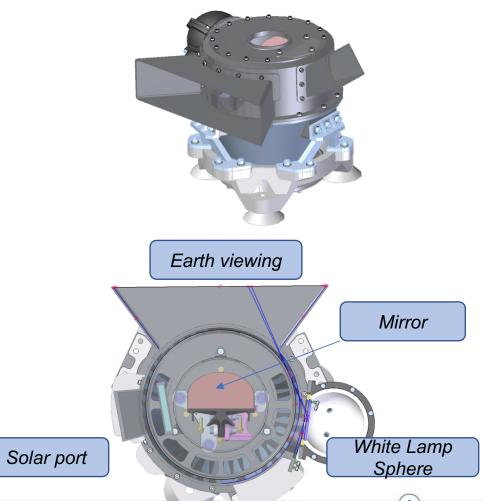
Focal Plane

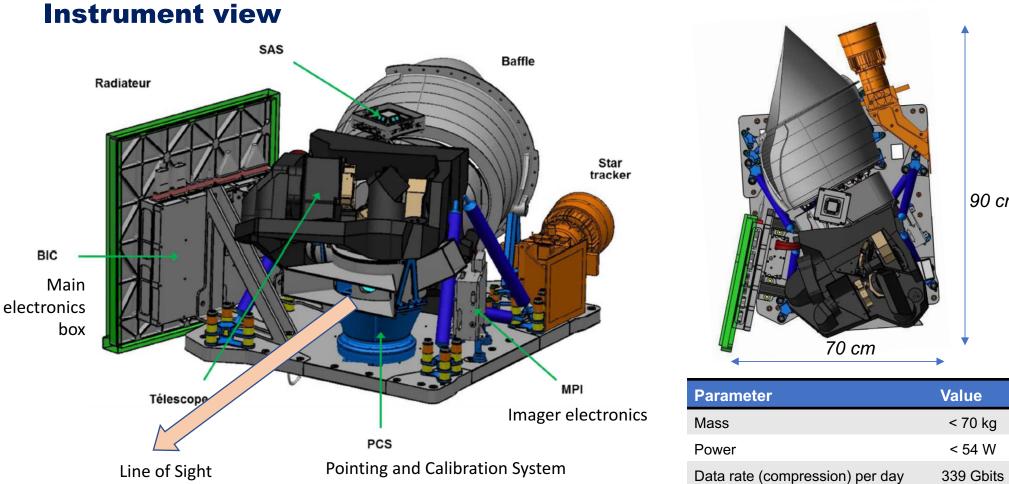

- NGP Detector(1024 x 1024). Sofradir
- Cooled down to 150 K by Passive cooling: radiator directed towards cold space
- Each band covers 100 x 1024 pixels
- Multi reading (10 Hz) mode implemented

 No processing aboard: all useful pixels downloaded => data compression implemented.

Polarization scrambler

- Goal: eliminate any bias due to polarization (and in particular unknown polarization due to aerosols)
- Based on Dual Babinet
- Creates a diamond effect
- Performances: residual polarization rate
 - Glint < 0.1 %
 - Nadir < 0.5%
- Polarization will be measured at instrument level

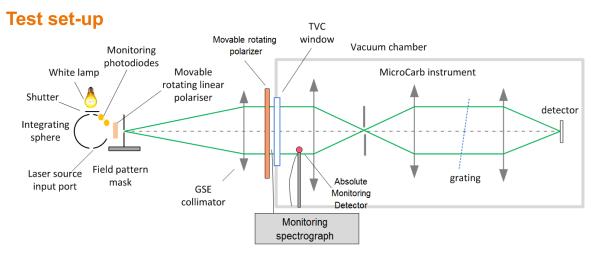



Pointing and calibration system

- A scan mirror (one axis) is integrated in the instrument
 - Releases constraints on satellite depointing capacity along roll axis (power, thermal) for target, glint, etc
 - Permits to implement the scan pointing mode over ± 35°
 - Pointing towards area without cloud (as far as possible) will be considered

Also used for calibration

- White lamp
- Solar port with diffuser
- And to Shutter
 - The instrument entrance
 - The solar port (protection of the diffuser vs space)



cnes

90 cm

Instrument calibration. On Ground

Optical devices

- Tunable laser source,
- Wide band source
- Integrating sphere,
- Collimator,
- Polarizer

Radiometric performances

- Dark signal: offset and stability
- Non linearity
- Absolute and relative gain
- Verification straylight model
- Verification polarization model

Test with heliostat under analysis

Spectral performances

- Dispersion law parameters
- Keystone
- ISRF Shape

Spatial performances

In orbit calibration and validation

Instrument calibration

- Closed shutter
 - Dark signal: offset and stability
- White lamp
 - relative radiometric gain
 - Keystone

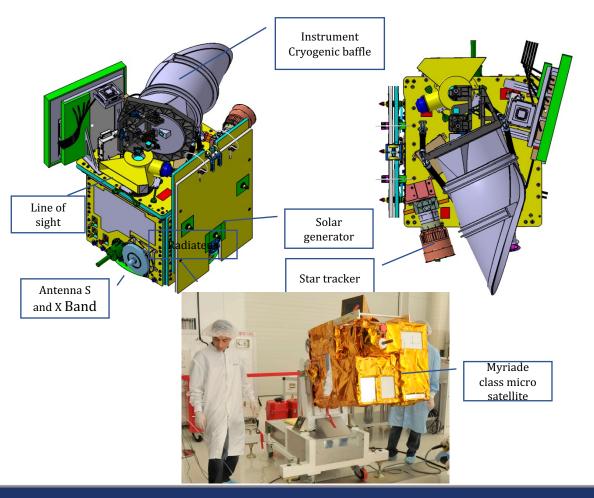
Sun Pointing

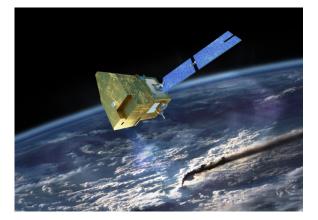
- Absolute radiometric gain
- Reference solar spectrum
- Dispersion law parameters

Moon pointing

• Co registration, etc

Data validation


- > The following is considered
- Comparison to TCCON station (+ COCCOON)
- Aircore (balloon flight)
- Vicarious campaign
- Cross validation with other projects (OCO, GoSat, Tansat, etc)



C₂Cnes

Satellite Description

- MicroCarb uses a micro satellite
- Enhanced Myriade family
- Flight proven: used for 19 satellites
- Mass 170 kg. Mean power: 100 W
- Dimensions 80 x 100 x 110 cm
- High rate telemetry: 156 Mbits/s
- On board Data storage: 800 Gbits
- Hydrazine propulsion : 55 m/s
- Steerable solar generator

6/6/18

Data processing

Processing tools under development

- Radiative transfer : 4A-OP (by LMD)
- Inversion algorithm: 4A RTIC (optimal estimation)
- Implementation of B4 on -going
- Spectroscopy data base: based on improved existing GEISA + addition of O2 @1. 27 µ
- Solar model: based on
 - SOLSPEC (by LATMOS) for the continuum
 - And Toon for absorption lines
- Scattering modelization. VLIDORT SOS

Other products

> SIF, airglow

Validation

- Processing applied to OCO-2 L1 data and comparison to OCO-2 L2
- Step 1: clear sky, nadir: completed
- Step 2: comparison to TCCON, scenes with aerosol, estimation of SIF, glint mode

Data latency

Products will be available within 48 hours in compliance with CAMS (Copernicus) requirements

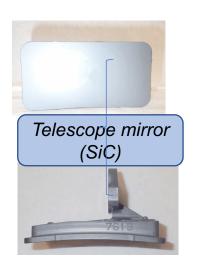
13 © cne

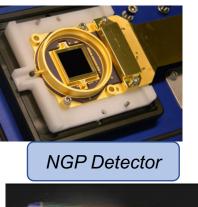
Performances

See poster C6.8 The MicroCarb L1 & L2 algorithms and performances -Denis Jouglet (CNES, France)

X _{CO2} Performances	Random error (ppm)
Prior	16.79
Mission requirements	< 0.5 (target) , <1.5 (threshold)
Min. Radiance (SZA=65°, refl = 0.13, 0.1, 0.1, 0.05)	1.5
Mean Radiance (SZA=36°, refl = 0.25, 0.2, 0.2, 0.1)	0.55
Max. Radiance (SZA=0°, refl = 0.55, 0.55, 0.55, 0.55)	0.22

Bias


Under construction



Status

Instrument realization in progress

Baffle

Echelle grating

Instrument integration and calibration: Jan to Dec 2019

Satellite integration and test: Jan to Dec 2020

Launch: 2021

Thank you for your attention !

