

What Can We Learn From Performing Simplified X_{CO2} Retrievals on Synthetic Near-Infrared Observations?

Robert R. Nelson¹, Christopher W. O'Dell², and Thomas E. Taylor²

¹Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA, ²Cooperative Institute for Research in the Atmosphere, Fort Collins, CO, USA California Institute of Technology

- The primary goal of OCO-2 is to use hyperspectral measurements of reflected near-infrared sunlight to retrieve the column-averaged dry-air mole fraction of carbon dioxide (X_{CO_2}) with high accuracy¹.
- One of the primary sources of uncertainty in the algorithm remains its cloud and aerosol parameterization. This is because near-infrared measurements are highly sensitive to even small levels of cloud or aerosol contamination.
- parameters (9 in OCO-2 B8) to be within the range of actual degrees of

uncertainty (all from the GEOS-5 FP-IT model).

Ice Cloud / Sulfate

Figure 2. Schematic of the 2-layer multi-type aerosol model designed to retrieve fewer aerosol

Figure. 6. Retrievals run on real measurements co-located with TCCON. Different combinations of GEOS-5 aerosol information and uncertainty were ingested as a priori.

Results

1- and 2-layer models perform about as well as B8, but can be computed faster due to fewer iterations being needed to converge (Figs. 4 and 5).

Coarse / Fine Mode

parameters than the operational OCO-2 retrieval algorithm.

Figure 3. *X*_{CO2} error of the four retrieval types for one synthetic OCO-2 orbit.

- New 1-layer effective radius retrieval performs poorly (Fig. 3)
- Improved aerosol prior tests (Fig. 6) reveal a small reduction in X_{CO_2} scatter when using instantaneous modeled optical depths but not our Gaussian profile fit technique. This is likely due to the limitations of fitting a single Gaussian to a full atmospheric profile of aerosol.
- Next steps:
 - Continue to investigate the effective radius retrieval
 - Create customized filtering & bias corrections for simplified retrievals
 - Analyze information content in retrieved aerosol properties

References

- ¹ Eldering et al.: The Orbiting Carbon Observatory-2: first 18 months of science data products, Atmos. Meas. Tech., 10, 2, doi:10.5194/ amt_10_549_2017, 2017.
- ² Frankenberg et al.: Aerosol information content analysis of multi-angle high spectral resolution measurements and its benefit for high accuracy greenhouse gas retrievals, Atmos. Meas. Tech., 5, 1809{1821, doi:10.5194/amt-5-1809-2012, 2012.
- ³ O'Brien et al.: Algorithm Theoretical Basis Document: The OCO Simulator ISSN 0737-5352-85, Tech. rep., Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, USA

Contact: Robert R. Nelson (*rrnelson@atmos.colostate.edu*)