The Impact of Accounting for 3-D CO₂ Production on Inversion for Natural Fluxes
Using GOSSAT and In Situ Observations

James S. Wang,1,2 Tomohiro Oda,1,2 S. Randolph Kawa,2 and Steven Pawson2
1Universities Space Research Association, Columbia, MD, james.s.wang@nasa.gov
2NASA Goddard Space Flight Center, Greenbelt, MD

1. Introduction
Most atmospheric inversions for estimating natural carbon dioxide (CO₂) fluxes have placed CO₂ release from fossil fuel combustion and other sources entirely at the surface. However, a portion of fossil fuel and biospheric carbon emissions (≈1 Pg C yr⁻¹) occurs in the form of reduced carbon species including carbon monoxide (CO), methane (CH₄), and non-methane volatile organic compounds (NMVOCs), which are oxidized to CO₂ downstream of the emissions. Omission of this “chemical pump” can result in a shift in the distribution of the inferred fluxes, e.g., in the global sink from the tropics to the northern extratropics. A few inversion studies using surface CO₂ observations have accounted for the chemical pump, the most thorough analysis being conducted by Suntharalingam et al. [2005]. Nassar et al. [2010] presented a forward model analysis using advanced chemistry model output. We further examine the impact of accounting for the chemical pump on flux inversions, with the added dimension of considering satellite observation-based as well as surface in situ-based inversions. Our hypothesis is that there will be differing regional impacts in GOSSAT and in situ inversions due to differences in horizontal and vertical observational sampling. This study employs a relatively high spatiotemporal resolution Bayesian inversion approach, and atmospheric CO₂ production rates derived from a state-of-the-art NASA chemistry model historical simulation. Early results are presented below.

2. Methods
• Assimilated observations
 - In situ: Individual flask and afternoon-averaged continuous measurements from NOAA ESRL and JMA
 - GOSSAT: ACOS B3.4 retrieval of weighted column-average CO₂, filtered and bias-corrected (figure on the right)
• Prior constraints
 - Net ecosystem production (NEP) and fire fluxes from CASA-GFED v.3 model
 - Ocean fluxes from Takahashi et al. [2009]
 - Fossil CO₂ emissions from CDIAC
 - Atmospheric CO₂ production and surface correction
 - CO oxidation (+ CO₂ production) rates from NASA GEOS-5 GMI chemistry-climate model nudged to MERRA-2 reanalysis meteorology
 - Fossil fuel CO and NMVOCs: As initial estimate, assume a uniform 4.89% of fossil CO₂ as with Nassar et al. [2010]
 - Biomass and biofuel burning: Apply non-CO₂ emission factor from GFED averaged over ecosystem types
 - Biospheric CH₄: TransCom-CH₄, interannually varying emissions [Patra et al., 2011]
 - Biospheric NMVOCs: Initially, apply global NMVOC/CH₄ ratio from Nassar et al. [2010] uniformly to our biospheric CH₄ distribution
• Transport model
 - PCTM, with MERRA meteorology, 2° latitude x 2.5° longitude x 56 layers
 - Inversion technique [Wang et al., 2018, in review, ACP]
 - TransCom-style batch Bayesian inversion synthesis
• Optimize natural fluxes in 108 regions (map on the right) over 8-day intervals, and initial concentrations; high resolution minimizes aggregation error.

3. Forward Model Simulations
3-D CO₂ Production and Surface Correction Budgets

<table>
<thead>
<tr>
<th>Component</th>
<th>Global, Annual Total (Pg C/y)</th>
<th>2009-2010, this work</th>
<th>2006, Nassar et al. [2010]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total chemical production</td>
<td>1.15</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>Total surface correction</td>
<td>0.97</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Fossil fuel combustion</td>
<td>0.41</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Biomass and biofuel burning</td>
<td>0.23</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Biospheric CH₄</td>
<td>0.16</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Biospheric NMVOCs</td>
<td>0.16</td>
<td>0.16</td>
<td></td>
</tr>
</tbody>
</table>

(Note that Nassar et al. did not apply surface corrections for biomass and biofuel burning since they did not include non-CO₂ carbon emissions for those sources in their baseline CO₂ simulation)

4. Inversion Results

• CO₂ production is greatest where OH oxidant is most abundant, i.e., in the tropics, and secondarily where CO and VOC concentrations are highest.

5. Conclusions and Further Work
• Our analysis of the impact of 3-D CO₂ production and surface correction on flux inversions confirms small but possibly significant shifts in the global sink seen in a previous analysis
• In addition, we find that a GOSSAT inversion may be more sensitive to the ‘chemical pump’ in ocean regions than a surface observation-based inversion
• We will examine in more depth the impact of the chemical pump on posterior fluxes via column vs. surface observations
• We will also test an alternative fossil CO₂ emissions database, CDIAC, in place of CDIAC

This work has been supported by the NASA Atmospheric CO₂ Observations from Space Program, Carbon Monitoring System Program, and Carbon Cycle Science Program. The NASA Goddard High-End Computing Program has provided access to supercomputing resources. Many thanks to S. Strode and L. Oman for providing MERRA2-GMI CO loss fields, G. J. Collatz for providing CASA-GFED fluxes, P. Patra for providing CH₄ emissions, M. Butler for providing inversion code and documentation, M. Mannay, Y. Liu, and S. Sternen for computing help, C. D’Oello and the GOSSAT and ACTS teams for the GOSSAT data, NOAA ESRL and JMA for surface data, L. Feng and P. Palmer for their inversion region map, and L. Ott for help with using ACOS data files and discussions.