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Seeded OPO with DBR laser

QUESTION W-8. What processes determine
observed atmospheric methane (CH4) variations and
trends and what are the subsequent impacts of
these changes on atmospheric
composition/chemistry and climate?
W-8a. Reduce uncertainty in tropospheric CH4
concentrations and in CH4 emissions, including
regional anthropogenic sources and from a
process level for natural sources.
QUESTION C-8. What will be the consequences of
amplified climate change already observed in the
Arctic and projected for Antarctica on global trends
of sea level rise, atmospheric circulation, extreme
weather events, global ocean circulation, and carbon

fluxes?

C-8f. Determine how permafrost-thaw driven
land cover changes affect turbulent heat fluxes,
above and below ground carbon pools,
resulting greenhouse gas fluxes (carbon
dioxide, methane) in the Arctic, as well as their
impact on Arctic amplification.
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elevation change of land ice to assess
Ice Elevation sea level contributions and freeboard
height of sea ice to assess sea
ice/ocean/atmosphere interaction
Coincident high-accuracy currents and
vector winds to assess air-sea
momentum exchange and to infer
upwelling, upper ocean mixing, and sea-

drift,
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& Snow  including high spatial resolution in lidar**
Water  mountain areas
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30 structure of terrestrial ecosystem  Lidar**
including forest canopy and above
IMI ground biomass and changes in above
ground carbon stock from processes
Structure such as deforestation & forest
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+1 K chonge in the lower tropotpbm (0-2 krn)
+1 K chonge in the mid-troposphere (5-7 km)
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2-way vertical path, ground-to-space
fixed column-averaged CH4 mixing ratio
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Temp Perturbation: +1K at
a) 0, 1 and 2-km level;

b) 5, 6 and 7-km level;

c) 10, 11 and 12-km level
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+1 K chonge in the upper troposphere (10-12 km)
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CH, transmission using a Reference cell
— Good agreement with CW laser scan
— Seeding and cavity control working

180223 CH4 cell transmission
® Seeded OPO, pulsed (left axis), ~60uJ output, 8.6A pump
Freedom Photonics DBR + SOA, static phase locking

—— DBR LD scan, CW (right axis)
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Why use a laser?

@ CH, Laser Transmitter “Requirements”

Passive

390 ppmv 410

Active
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Comparison of actual OCO-2 coverage (left) vs. simulated ASCENDS coverage for
December 16-31, 2015. The sparse sampling OCO-2 coverage at high latitudes is a
major drawback of passive remote sensing missions.

Emission wavelength must coincide with suitable
CH, absorption lines (1645.5 nm and 1651 nm)

Must have high pulse energy (~600 pJ) and high
pulse repetition rate. Depending on the receiver
size and other instrument parameters we calculate
that approximately 600 pJ 1s needed to make a
measurement with a 0.5% precision.

Must be tunable (~300-500 pm) and scan rapidly
(0.5-1 KHz) over the CH, absorption line

Must have narrow linewidth (~100 MHz).

Smaller, lighter, easier to operate and align
Simultaneous dual beam capability

OPO completed and aligned

Er:YAG in progress

Ready to fly!
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Transmitter (Laser) technology

Current (optimum) Wavelength for CHy Earth
Detection: ~1.64-1.66 pm

Optical Parametric Oscillators (OPO) and Optical
Parametric Amplifiers (OPA) are the “baseline”
solutions for the transmitter.

Other options (Er:YAG and Er:YGG) now

possible.

v Receiver (Detector) Technology
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“Ideal” Instrument — has only random noise which can be averaged indefinitely.

Two wavelengthscan adequately samplethe lineshape. Averagingalways helps.

Real Instrument — has random and non-random noise which can NOT alwaysbe averaged.
Two wavelengthscan NOT adequatelysample the lineshape and reduce biases.
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@ GSFC laser transmitter current status

Optical Depth

Mid—lotitude Summer, 2—-way
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— Successful seeding with step-tuned DBR laser
— Open path measurements started.

« OPA

— On hiatus — will be revisited when high power seed 1s delivered.

— Power scaling and tunability need testing.

* Er:YGG/Er:YAG
— Waiting for Er:YAG laser (~June 2018)
— Testing Er:YAG NPRO crystal n CW mode
— Setting up seeding for Er:-YGG
* Fast-tuned seed laser
— 16-wavelength locked seed laser now combined with the OPO

— Fast-tuned seed laseris applicable to all designs

2015 Flight Results

*  DOD lidar
— Lin0ar it
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@ GSFC New multi-wavelength OPO
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Summary

Spectroscopic changes

+1 K chonge in the lower troposphere (0-2 km)

2-way vertical path, ground-to-space
fixed total column CH4 # of molecules
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Temp Perturbation: +1K at
a) 0, 1 and 2-km level;

b) 5, 6 and 7-km level;

c) 10, 11 and 12-km level
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+1 K chonge in the mid—troposphere (5-7 km)
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+1 K chonge in the upper troposphere (10-12 km)

-t

— Now combined with the fast tuning DBR seed laser
— Multi-wavelength OPO is becoming a reality.

— Starting open path measurements

Fiber collimator
for fiber coupling
OPO output

OPO setup as of Mar.
2018

We have a prime candidate (OPO) for the laser
transmitter for space (and airborne).

A backup candidate (Er:Yxx) 1s also possible.

Engineering issues remain but laser transmitter
architecture has converged.

All approaches are benefitting from step-tuned
and locked DBR seed laser.

New CH ,lidar ready for airborne campaigns.




