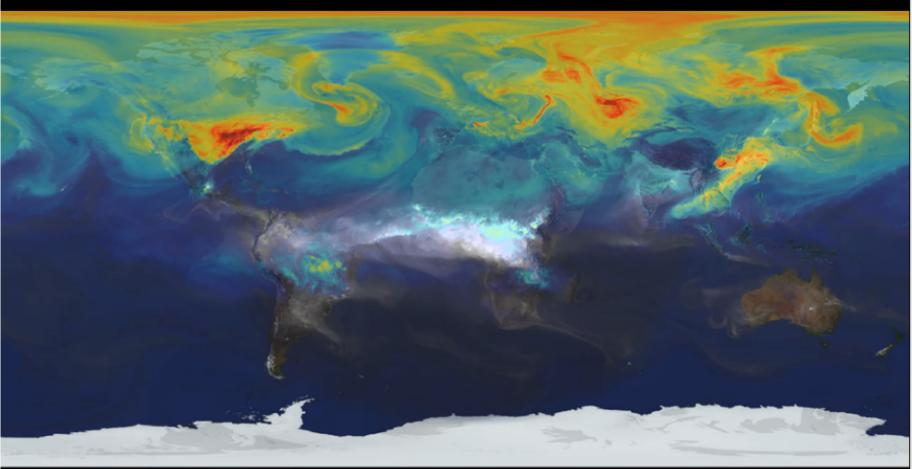

Precision, Accuracy, Resolution, and Coverage: A few insights from GOSAT and OCO-2

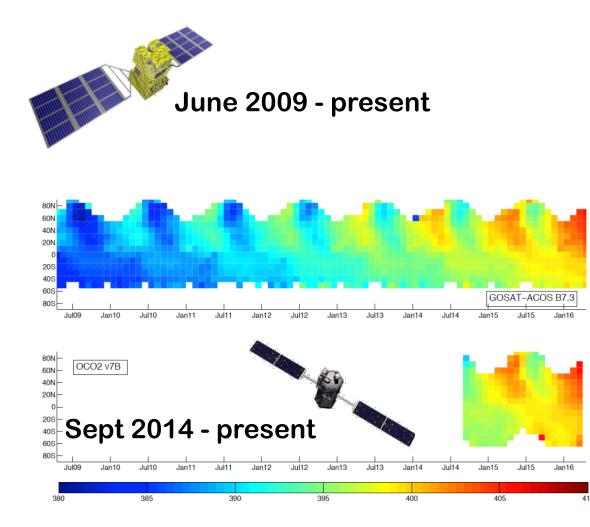
David Crisp and Annmarie Eldering, Jet Propulsion Laboratory, California Institute of Technology May 8, 2018

From Crisp et al, IWGGMS-1 (2004)


- Space-based measurements of X_{CO2} with precisions of 1–2 ppm (0.3 – 0.5%) will resolve
 - pole to pole X_{CO2} gradients on regional scales
 - the X_{CO2} seasonal cycle in the Northern Hemisphere
- Improve constraints on CO₂ sources and sinks compared to the current knowledge
 - Continental scale flux uncertainties reduced below 30 gC m⁻² yr⁻¹
 - Regional scale flux uncertainties reduced from >2000 gC m⁻² yr⁻¹ to < 200 gC m⁻² yr⁻¹

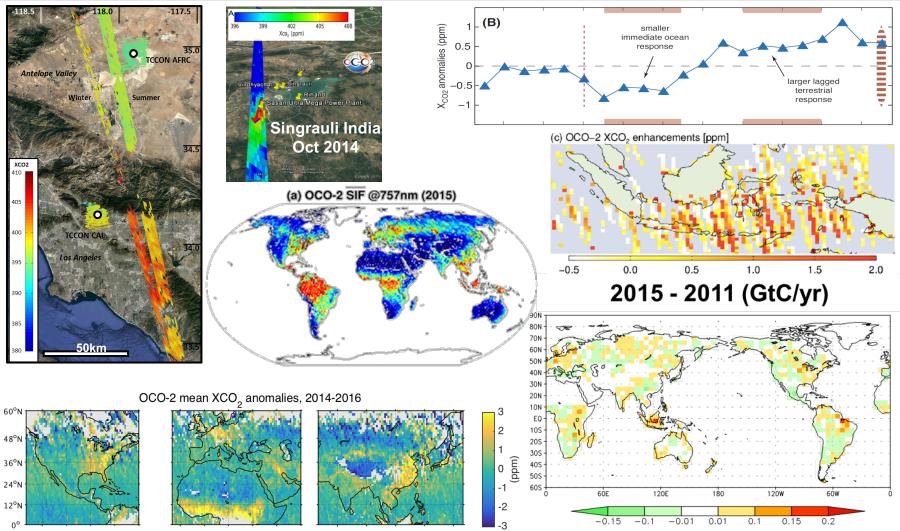
But the Actual X_{CO2} Field Looked more Like This

380	385	390	395
1.5	3.0	4.5	6.0


Column CO₂ Mixing Ratio (ppmv) Column CO Burden (10¹⁸ molec cm⁻²)

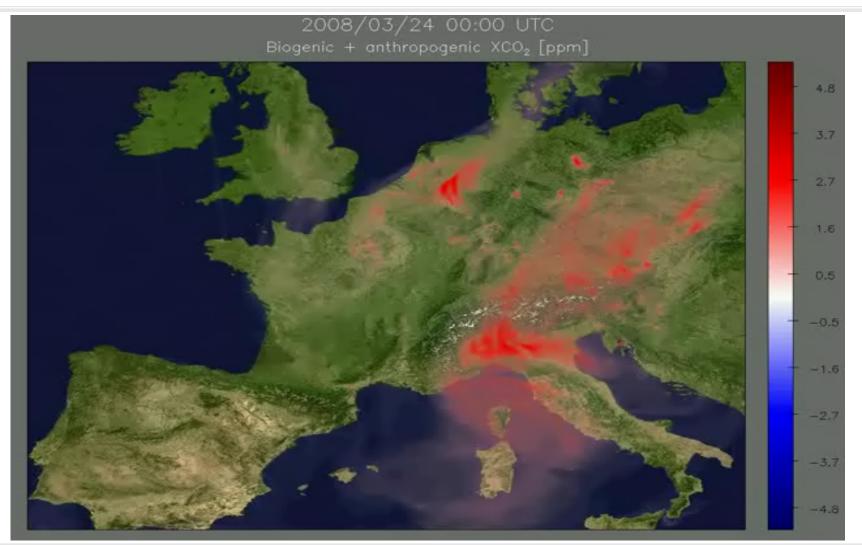
01/01/2006, 0000 UTC

So we Flew GOSAT and OCO-2


TCCON and other standards have been used to cross validate OCO-2 and GOSAT X_{CO2} to extend the climate data record

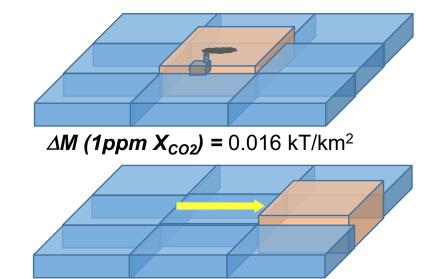
The magnitude of differences between GOSAT-ACOS B7.3 and OCO2 v7r are within ±1 ppm for overlap regions

These Systems are Now Being Used to Study the Carbon Cycle


To support the Paris Agreement:

- The overall goal is to develop a sound, scientific, measurementbased approach that:
 - reduces uncertainty of national emission inventory reporting,
 - identifies large and additional emission reduction opportunities
 - provides nations with timely and quantified guidance on progress towards their emission reduction strategies and pledges (Nationally Determined Contributions, NDCs)
- In support of these efforts, atmospheric measurements of greenhouse gases from satellites could
 - Improve the frequency and accuracy of inventory updates for nations not well equipped for producing reliable inventories, and
 - help to "close the budget" by measurement over ocean and over areas with poor data coverage
- We now have strong support, but new marching orders

Anthropogenic Emissions



Compact Source Uncertainties Drive Precision

- For emission sources that are smaller than the footprint size, the minimum detectable mass or mass change depends on instrument precision (ΔX_{CO2} or ΔX_{CH4}) and footprint area, A.
- The minimum detectable flux change depends on precision, the effective wind speed at the emission level and the footprint's cross section in the direction of the prevailing winds.

 $F_{min} = 2 \cdot u \cdot \Delta M_{CO2}(\Delta XCO2_{min}) / L$

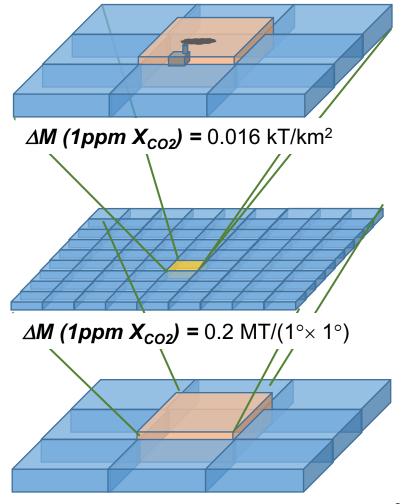
 Detection limits increase with random error, footprint size, and wind speed

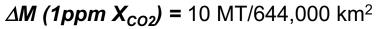
Flux (MTCO $_2$ /year) vs Footprint area and single sounding precision for a 5 km/hour wind

	DXCO2(ppm)				
Area (km²)	0.25	0.5	1	2	4
1	0.341	0.683	1.37	2.7	5.47
2	0.483	0.966	1.93	3.86	7.73
4	0.685	1.37	2.7	5.47	10.9
10	1.08	2.16	4.33	8.66	17.3
50	2.41	4.83	9.66	19.3	38.6
85	3.14	6.29	12.6	25.1	50.4
1800	14.4	28.9	57.8	115	231

Emissions from Compact Sources: plume models

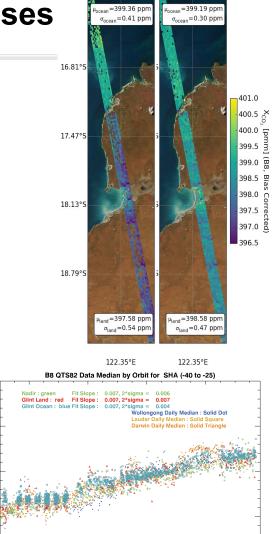
- The OCO-2 (0.5 ppm single sounding random errors) can clearly detect plumes that fall along its ground track
- Plume imaging methods can exploit information from multiple footprints to reduce uncertainties if
 - biases are not spatially correlated
 - footprints within the plume can be discriminated from the background
 - Proxies (NO₂, CO) help for CO₂ plumes
- Averaging typically reduces X_{CO2} anomaly uncertainties (and thus flux uncertainties) by less than a factor of 2
- Wind speed and X_{CO2} uncertainties contribute comparable flux uncertainties





Low Bias Critical for Estimating Fluxes over Extended Areas – like Nations

- Over large areas (> 10,000 km²), random errors average out, but biases are more critical
 - A persistent, 1 ppm X_{CO2} bias between 2 adjacent 1°×1° latitude areas corresponds to a 0.2 Mt CO₂ error
 - A 1 ppm bias between two averagesized countries France, with an area of 643,801 km²) grows to 10 Mt CO₂
- If our average-sized country is roughly equidimensional, and we assume a mean 10 m/sec wind over this area, this corresponds to a flux error of 3400 MtCO₂/year
 - This is about 10 times the annual fossil fuel CO₂ emissions from France
- Clearly, biases this large are unacceptable for informing fossil fuel inventories



Mitigating the Impact of Biases

- Fortunately, only spatially and temporally coherent biases operating on the scale of interest can introduce flux errors as large as the one illustrated on the previous slide
 - Biases that are spatially and temporally invariant do not introduce large flux errors, because fluxes are proportional to the product of the anomaly amplitude and the wind, $F \propto u \times \Delta X_{CO2}$
 - Small scale biases often average out
- Some processes can introduce spatially coherent biases
 - surface pressure, air mass dependence, optically-thin clouds and/or aerosols, surface albedo, ...)
- Many of these processes can be identified and mitigated through a well designed calibration/validation program

Dec 2014

Jun 2015

Jan 2016

Date

Jul 2016

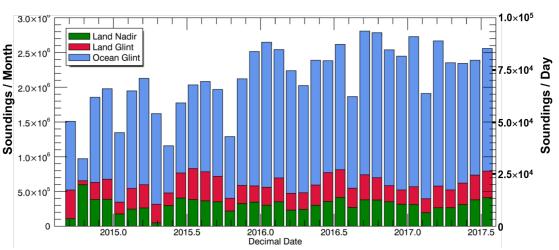
Resolution and Coverage: Sampling Strategy

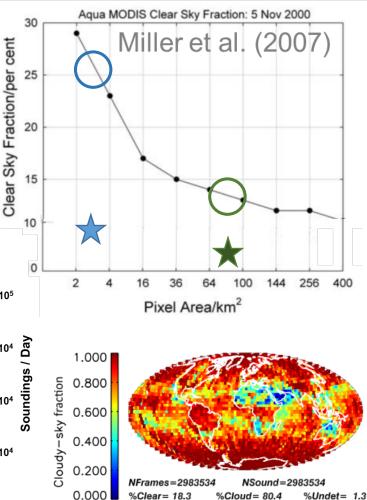
- The resolution and coverage of space based greenhouse gas observations is limited by the spatial sampling strategy adopted
 - The large (30 km x 60 km) footprints used by SCIAMACHY provided good coverage of the Earth, but most were contaminated by clouds or aerosols
 - Systems that collect spatially-isolated sample (GOSAT, Feng Yun 3D, Gaofen-5) cannot resolve localized emissions (plumes) as well as their background
 - Continuous "stripes" like those collected ^{Country} by OCO-2, TanSat, and MicroCarb provide high spatial resolution along a narrow track but there are large distances between sample tracks
- SCIAMACHY
 GOSAT
 OCO-2

 30 x 60 km²
 85 km²
 2.3 x 1.3 km²

 City
 Image: City mark
 Image: City mark

 Country
 Image: City mark
 Image: City mark


- Systems that cannot observe the glint spot over the full range of latitudes cannot collect observations over the oceans, which cover 70% of the surface of the Earth
- Passive solar systems can only collect observations while the sun is up



Resolution and Coverage: Clouds!

- Early in the evolution of the OCO and GOSAT missions, optically thick clouds were identified as significant limitation on coverage
- Based on MODIS cloud studies, a small footprint was adopted for OCO (and OCO-2) to mitigate this issue

Improving Resolution and Coverage: Combining Data from the Emerging Fleet

Satellite, Instrument (Agencies)	CO ₂ CH ₄	Swath	Sample	2002		2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
ENVISAT SCIAMACHY (ESA)	• •	960 km	30x60 km ²																			
GOSAT TANSO-FTS (JAXA-NIES-MOE)	• •	3 pts	10.5 km (d)																			
OCO-2 (NASA)	•	10.6 km	1.3x2.3 km ²																			
TanSAT (CAS-MOST-CMA)	•	20 km	1x2 km ²																			
Sentinel 5P TROPOMI (ESA)	•	2600 km	7x7 km ²																			
Feng Yun 3D GAS (CMA)	• •		10 km (d)																			
OCO-3 (NASA)	•	11 km	~4 km ²												On	ISS						
GOSAT-2 TANSO-FTS (JAXA-MOE-NIES)	• •	5 pts	10.5 km (d)															1				
MERLIN (DLR-CNES)	•	100 m	0.14 km (w)																			
MicroCarb (CNES)	•	13.5 km	40 km ²																			
MetOp Sentinel-5 series (Copernicus)	•	2670 km	7x7 km ²																			
GEOCARB (NASA)	• •		4x4 km ²																Geosta	ationary		
Feng Yun 3G (CMA)	• •		1x1 km ²																			
GOSAT-3 (JAXA-MOE-NIES)	• •																					
CO2 Monitoring series (Copernicus)	• •		2x2 km ²																			
					Not op	eration	al		Operat	ional			Missior	n extens	ion		Planne	ed			Consid	ered

- A broad range of GHG missions will be flown over the next decade.
- We could improve resolution and coverage by combining their results

Improving Resolution and Coverage: Dedicated Greenhouse Gas Constellations

- The coverage, resolution, and precision requirements could be achieved with a constellation that incorporates
 - A constellation of 3 (or more) satellites in **LEO** with
 - A broad (> 200) km swath
 - A small mean footprint size < 4 km²
 - A single sounding random error near 0.5 ppm and vanishingly small regional scale bias (< 0.1 ppm) over > 80% of the sunlit hemisphere
 - One (or more) satellites carrying ancillary sensors (CO, NO₂, CO₂ and/or CH₄ Lidar)
 - A constellation with 3 (or more) satellites in GEO to monitor diurnally varying processes (e.g. diurnal variations in the biosphere, diurnal changes in anthropogenic emissions, SIF)
 - Stationed over Europe/Africa, North/South America, and East Asia
- This constellation could be augmented with one or more HEO satellites to monitor carbon cycle changes in the high arctic

Tools Needed to Meet New Requirements

- Sensors with improved precision, spatial resolution, and coverage
 - Improved instrument calibration accuracy and stability
 - Add hoc constellation consisting of the satellites in the "program of record"
 - Dedicated LEO and Geo GHG constellations
- Improved remote sensing retrieval algorithms
 - More accurate description of gas absorption and aerosol scattering
 - Optimized to more fully exploit the information content of solar GHG spectra
- More comprehensive and accurate validation standards
 - Expand and improve ground based in situ, TCCON, AirCore/Aircraft
- Improved atmospheric inversion models
 - Higher spatial resolution
 - More accurate description of both horizontal and vertical transport
 - More complete assimilation of ground-based, aircraft, and space based data
 - Methods to validate estimated fluxes on local, national, and regional scales

