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ACE on SCISAT-1

Launch date: 12 August 2003
Orbit: 74°inclination at 650 km
Measurement mode: solar occultation

ACE-FTS:
• FTIR spectrometer, 2-13 microns at 

0.02 cm-1 resolution
• 2-channel visible/NIR imager, 0.525 

and 1.02 microns
MAESTRO:
• dual UV / visible / NIR grating 

spectrophotometer, 285 to 1030 nm 
at ~1-2 nm resolution

Pointing: suntracker in ACE-FTS

Atmospheric Chemistry Experiment (ACE) Satellite Mission:
Mission to measure 
atmospheric composition:  
profiles of trace gas species, 
cloud and aerosol extinction 
and temperature/pressure



ACE Data Products
• ACE-FTS profiles (current version 3.5; previous v2.2+updates):

– Tracers: H2O, O3, N2O, NO, NO2, HNO3, N2O5, H2O2, HO2NO2, N2

– Halogen-containing gases: HCl, HF, ClONO2, CFC-11, CFC-12, CFC-
113, COF2, COCl2, COFCl, CF4, SF6, CH3Cl, CCl4, HCFC-22, HCFC-
141b, HCFC-142b 

– Carbon-containing gases: CO, CH4, CH3OH, H2CO, HCOOH, C2H2, 
C2H6, OCS, HCN and pressure / temperature from CO2 lines

– Isotopologues: Minor species of H2O, CO2, O3, N2O, CO, CH4, OCS
– Research species: CH3CN, acetone, SO2, peroxyacetyl nitrate (PAN)… 

• MAESTRO profiles (current version 3.13; validated version 1.2):  
– O3, NO2, optical depth, aerosol and water vapor (research version)

• IMAGERS profiles (current version 3.5; validated version 2.2):  
– Atmospheric extinction & aerosol extinction at 0.5 and 1.02 microns



Limb satellite comparisons – N2O

• Mean differences of pairs of coincident profiles within 6 hours; 
500 km – calculated as (ACE-FTS v3.5/3.6 – instrument)

• Reasonable agreement below 40 km; comparison degrades as 
N2O concentration decreases into upper stratosphere
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Limb satellite comparisons – CH4

• Comparisons with HALOE (2004-2005) and two MIPAS processor 
versions (ESA and IMK-IAA – 2005-2012)

• Mean differences of coincident profiles within 6 hours; 500 km
• At lower altitudes, better agreement with HALOE, switching to better 

agreement with MIPAS above 40 km – generally ±10-15% above 20 km
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Cross-Validation of GOSAT TIR CH4

• Comparing TANSO-FTS (v1), ACE-FTS (v3.5), MIPAS (ESA 
ML2PP v6 and IMK-IAA V5R_CH4_224/225) and NDACC 
FTIR measurements globally 

• First 200 coincidences of 2012 shown on map below

K. Olsen et al., Atmos. Meas. Tech., 10, 3697-3718 (2017).



CH4 Comparisons versus GOSAT
• Because of measurement sensitivity and altitude range, need to work with 

partial columns for comparisons – tightly correlated for pairs of data sets 
• Differences change by ~0.1 % per ten degrees latitude, these are smaller 

over equator and greater towards poles

• TANSO-FTS vertical profiles agree with ACE-FTS and both MIPAS 
retrievals’ within 4 % below 15 km (smoothed) – differences can be on 
the order of 25 % without smoothing

K. Olsen et al., Atmos. Meas. Tech., 10, 3697-3718 (2017).



MAESTRO “Research” H2O

• Chahine inversion 
using observed 
differential optical 
depth spectra from 
926.0–969.7 nm

• UTLS product from 
~5 km (cloud tops) 
to ~22 km

• Tends to be too wet 
in tropics; too dry in 
south pole summer

• Method described in Sioris et al., Adv. Space Res. (2010)

Chris Sioris and Stefan Lossow
2004-2010 global; 12541 
pairs; ACE-FTS; MAESTRO
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Limb satellite comparisons – H2O

• Detailed comparisons being done as part of SPARC WAVAS-II 
project – better consistency seen above 20 km

• Note, MAESTRO retrieval works best in troposphere
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H2O profiles versus Radiosondes

• Using coincident 
radiosondes 
from Eureka 
Weather Station 
(~80 N, 86W)

• Tropospheric 
performance 
shown for ACE-
MAESTRO

• 2009-2017 
period for 
comparisons

D. Weaver et al., in preparation.

Calculated as (Satellite – Radiosonde); Relative to Radiosonde
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Summary

• ACE Instruments and satellite are continuing to function 
nominally and produce excellent results

• Profile measurements for greenhouse gases including N2O, 
CH4 and H2O are available
– Reprints available from http://www.ace.uwaterloo.ca
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