

Validation for Greenhouse Gases Measured by the Atmospheric Chemistry Experiment (ACE) Satellite

Kaley A. Walker¹, Patrick E. Sheese¹, Jiansheng Zou¹, Christopher Sioris², Chris Boone³, and C. Thomas McElroy⁴

¹Physics, University of Toronto; ²Environment and Climate Change Canada; ³Chemistry, University of Waterloo;

⁴Earth and Space Science and Engineering, York University

14th IWGGMS – Toronto, Canada – 8 May 2018

ACE on SCISAT-1

Atmospheric Chemistry Experiment (ACE) Satellite Mission:

Mission to measure atmospheric composition: profiles of trace gas species, cloud and aerosol extinction and temperature/pressure

Launch date: 12 August 2003 Orbit: 74° inclination at 650 km Measurement mode: solar occultation

ACE-FTS:

- FTIR spectrometer, 2-13 microns at 0.02 cm⁻¹ resolution
- 2-channel visible/NIR imager, 0.525 and 1.02 microns

MAESTRO:

 dual UV / visible / NIR grating spectrophotometer, 285 to 1030 nm at ~1-2 nm resolution

Pointing: suntracker in ACE-FTS

- ACE-FTS profiles (current version 3.5; previous v2.2+updates):
 - Tracers: H_2O , O_3 , N_2O , NO, NO_2 , HNO_3 , N_2O_5 , H_2O_2 , HO_2NO_2 , N_2
 - Halogen-containing gases: HCl, HF, ClONO₂, CFC-11, CFC-12, CFC-113, COF_2 , $COCl_2$, COFC1, CF_4 , SF_6 , CH_3C1 , CCl_4 , HCFC-22, HCFC-141b, HCFC-142b
 - Carbon-containing gases: CO, CH_4 , CH_3OH , H_2CO , HCOOH, C_2H_2 , C_2H_6 , OCS, HCN and pressure / temperature from CO_2 lines
 - Isotopologues: Minor species of H₂O, CO₂, O₃, N₂O, CO, CH₄, OCS
 - Research species: CH₃CN, acetone, SO₂, peroxyacetyl nitrate (PAN)...
- MAESTRO profiles (current version 3.13; validated version 1.2):
 O₃, NO₂, optical depth, aerosol and water vapor (research version)
- IMAGERS profiles (current version 3.5; validated version 2.2):
 - Atmospheric extinction & aerosol extinction at 0.5 and 1.02 microns

- Mean differences of pairs of coincident profiles within 6 hours;
 500 km calculated as (ACE-FTS v3.5/3.6 instrument)
- Reasonable agreement below 40 km; comparison degrades as N₂O concentration decreases into upper stratosphere

MLS v4.2; SMR v2.1; MIPAS IMK-IAA v5R 220; MIPAS ESA v7

Patrick Sheese

Limb satellite comparisons – CH₄

- Comparisons with HALOE (2004-2005) and two MIPAS processor versions (ESA and IMK-IAA 2005-2012)
- Mean differences of coincident profiles within 6 hours; 500 km
- At lower altitudes, better agreement with HALOE, switching to better agreement with MIPAS above 40 km generally $\pm 10-15\%$ above 20 km

Cross-Validation of GOSAT TIR CH₄

- Comparing TANSO-FTS (v1), ACE-FTS (v3.5), MIPAS (ESA ML2PP v6 and IMK-IAA V5R_CH4_224/225) and NDACC FTIR measurements globally
- First 200 coincidences of 2012 shown on map below

CH₄ Comparisons versus GOSAT

- Because of measurement sensitivity and altitude range, need to work with partial columns for comparisons tightly correlated for pairs of data sets
- Differences change by ~0.1 % per ten degrees latitude, these are smaller over equator and greater towards poles

• TANSO-FTS vertical profiles agree with ACE-FTS and both MIPAS retrievals' within 4 % below 15 km (smoothed) – differences can be on the order of 25 % without smoothing

K. Olsen et al., Atmos. Meas. Tech., 10, 3697-3718 (2017).

MAESTRO "Research" H₂O

- Method described in Sioris et al., Adv. Space Res. (2010)
- Chahine inversion using observed differential optical depth spectra from 926.0–969.7 nm
- UTLS product from ~5 km (cloud tops) to ~22 km
- Tends to be too wet in tropics; too dry in south pole summer

- Detailed comparisons being done as part of SPARC WAVAS-II project – better consistency seen above 20 km
- Note, MAESTRO retrieval works best in troposphere

MAESTRO v30; MLS v4.2; SMR v2.1; COSMIC v3520; SCIAMACHY 3.0; HALOE v19; MIPAS IMK-IAA v5R 220; MIPAS ESA v7; SAGE III v3; POAM III v4 Patrick Sheese

H₂O profiles versus Radiosondes

- Using coincident radiosondes from Eureka Weather Station (~80 N, 86W)
- Tropospheric performance shown for ACE-MAESTRO
- 2009-2017 period for comparisons

Calculated as (Satellite – Radiosonde); Relative to Radiosonde

D. Weaver et al., in preparation.

Summary

- ACE Instruments and satellite are continuing to function nominally and produce excellent results
- Profile measurements for greenhouse gases including N_2O , CH_4 and H_2O are available
 - Reprints available from http://www.ace.uwaterloo.ca

Funding for ACE and this work provided by:

- Canadian Space Agency (CSA)
- Natural Sciences and Engineering Research Council of Canada
- Environment and Climate Change Canada

Thanks to:

• SCISAT Science Operations Centre and Peter Bernath