

The Orbiting Carbon Observatory (OCO) Mission

Watching The Earth Breathe... Mapping CO₂ From Space.

The OCO-3 Mission: Science Objectives and Instrument Performance

May 9, 2018 Compiled by Annmarie Eldering

And the OCO-3 team, including Chris O'Dell, Tommy Taylor, Ryan Pavlick, Thomas Kurosu, Greg Osterman, and Brendan Fisher & OCO-3 Cal team, Rob Rosenberg, Richard Lee, Peter Lawson, Lars Chapsky, Shanshan Yu, & Matt Bennett, Muthu Jengenathan, Gary Spiers, Ralph Basilio Jet Propulsion Laboratory, California Institute of Technology

Copyright 2018 California Institute of Technology

Progressing to our goal

- Funding secured in March 23rd budget by US Congress
- Instrument integration is complete
- Thermal vacuum (TVAC) testing is underway
- Payload to be delivered to storage when TVAC is done
- Payload will be shipped to Cape Canaveral ~ Nov 2018 for integration on launch vehicle
- Launch is planned on a Space-X Dragon in February 2019

ISS External Payload

- Payload status (with pictures!)
- Preliminary TVAC results
- Global simulations
- Context Camera data
- Snapshot mode planning and simulations
- What you can expect (launch, IOC, data flows)

The other view of complete build

Payload with LVIS and transportation cart

- We completed a full year of simulations at 1/240th true data density
- Tommy Taylor, Chris O'dell and I are revising a paper draft near completion
- Overall findings
 - Sufficient SNR to get data products with similar quality to OCO-2
 - Sampling pattern changes and can be very different in a daily sense, but on a seasonal, and even monthly scale, data density show full global coverage
 - Chris and Tommy apply the bias analysis tools (cheating by using truth input), and see features and bias terms similar to the OCO-2 data → points to this being algorithm driven
- GOAL: Get simulated data set to flux inversion community to test the use of OCO-2 and OCO-3 data together. Keep experiment small, so we can complete it before launch. Volunteers??

Context Cameras on OCO-3

- Internal context camera (red image) specifically for geolocation. Gold mirrors will alter the color balance of the image.
- External context camera (left) will collect a large image in false color.

OCO-3 Science Planning – Snapshot Mode

OCO-3 Snapshots Plus Context Camera

- During City Mode scan, the context imager will take pictures every 15 seconds
 - Provides an overlapping set of images that will extend ~15-20 km outside X_{CO2} snapshot mode data (something like 1.5 to twice the image on the right)
- Science opportunity
 - Large industrial plumes will be clearly visible in the imagery
 - X_{CO2} field can be compared to plume – especially when visible plume disappears

Orbital ATK

- Thomas Kurosu and Ryan Pavlick are building tools that we will use inflight
 - Use actual ISS orbit path data for 2015
 - Using operational software that controls the pointing system
 - Assess when areas of interest are in view for OCO-3
 - Begin testing automated prioritization and visualization tools
- Key tasks
 - Does our planned prioritization/selection scheme work? What are the tradeoffs if number of locations sampled and revisit frequency?
 - What will these maps really look like with the operational tools for controlling the pointing mechanism? Develop parameters to get desired shapes of maps
 - Collect feedback from science users about the maps/frequency/priorities
 - I clearly need to talk to Claude and the MicroCarb team!

New Snapshot targets from ODIAC (colored by emission intensity)

Copyright 2018 California Institute of Technology IWGGMS May 2018

14

Zoom in of Southwest of US

What we really see, considering restrictions on pointing system

Center of tracks of data collected for snapshot over Los Angeles

- Plotted over nightlights, just to show the scan area relative to the populated areas
- Just one example orbit tracks change all the time, so there are changes to the mapped area

-119.4 -118.8 -118.2 -117.6 -117.0 -116.4

Orbital ATK

let Propulsion Laborator

California Institute of Techr

Footprints sketched for snapshot over LA

• There will be footprint rotation – not yet in these simulations

The Big Picture

- Key Science Activities
 - Installation on the ISS in Feb 2019 (STM meeting in coordination)
 - IOC will take 2 to 3 months decontaminate instrument, verify pointing, exercise each observation mode, etc → OCO-2 work likely to slow down in that period, due to overlap of teams
 - We will prioritize delivery of nadir/glint global data first
 - Then target mode
 - Then snapshot mode
- Still working on
 - Delivery and format of context camera imagery
 - Snapshot/target server to help users find special observations of interest more easily → including searchable mapping tools

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

BACKUP

© 2018 California Institute of Technology. U.S. Government sponsorship acknowledged. Carbon Club January 2018

Simulated OCO-3 Snapshot Mapping (circa 2015)

Copyright 2018 California Institute of Technology IWGGMS May 2018

Target Measurement plan

- Target measurements for OCO-3 will look just like OCO-2 (except from some footprint rotations....)
- The big changes
 - We are not limited to just 19 targets, like OCO-2 is
 - We lose a lot less ND/GL data before and after the target collection
 - We can collect a few a day if we want
- We will likely collect more targets than OCO-2, but only twice as many, not 10 times as many, as OCO-2 has been able to meet validation needs.

